Local-global principle for reduced norms over function fields of p-adic curves

被引:11
|
作者
Parimala, R. [1 ]
Preeti, R. [2 ]
Suresh, V. [1 ]
机构
[1] Emory Univ, Dept Math & Comp Sci, 400 Dowman Dr NE, Atlanta, GA 30322 USA
[2] Indian Inst Technol, Dept Math, Bombay 400076, Maharashtra, India
基金
美国国家科学基金会;
关键词
HASSE PRINCIPLE; U-INVARIANT;
D O I
10.1112/S0010437X17007618
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let K be a (non-archimedean) local field and let F be the function field of a curve over K. Let D be a central simple algebra over F of period n and lambda is an element of F*. We show that if n is coprime to the characteristic of the residue field of K and D. (lambda) 0 in H-3 (F, mu(circle times)(n)2), then lambda is a reduced norm from D. This leads to a Hasse principle for the group SL1 (D), namely, an element lambda is an element of F* is a reduced norm from D if and only if it is a reduced norm locally at all discrete valuations of F.
引用
收藏
页码:410 / 458
页数:49
相关论文
共 50 条