Algebraic cycles on products of elliptic curves over p-adic fields

被引:4
|
作者
Rosenschon, Andreas [1 ]
Srinivas, V.
机构
[1] Univ Alberta, Dept Math, Edmonton, AB, Canada
[2] Tata Inst Fundamental Res, Sch Math, Bombay 400005, Maharashtra, India
关键词
D O I
10.1007/s00208-007-0107-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that for any odd prime p there is a smooth projective threefold W defined over a p-adic field such that the Chow group CH2(W)/l and the Griffiths group Griff(2)(W)/l are infinite for suitable primes l. We further give examples of smooth projective fourfolds W x F over these p-adic fields for which the l- torsion subgroup CH3(W x F)[l] is infinite.
引用
收藏
页码:241 / 249
页数:9
相关论文
共 50 条
  • [1] Algebraic cycles on products of elliptic curves over p-adic fields
    Andreas Rosenschon
    V. Srinivas
    Mathematische Annalen, 2007, 339 : 241 - 249
  • [2] Zero-cycles on products of elliptic curves over p-adic fields
    Takemoto, Takashi
    ACTA ARITHMETICA, 2011, 149 (03) : 201 - 214
  • [3] Cryptography on elliptic curves over p-adic number fields
    MaoZhi Xu
    ChunLai Zhao
    Min Feng
    ZhaoRong Ren
    JiQing Ye
    Science in China Series F: Information Sciences, 2008, 51 : 258 - 272
  • [4] Cryptography on elliptic curves over p-adic number fields
    XU MaoZhi 1
    2 China Electronic Equipment System Engineering Corporation
    3 Microsoft Research Asia
    ScienceinChina(SeriesF:InformationSciences), 2008, (03) : 258 - 272
  • [5] Cryptography on elliptic curves over p-adic number fields
    Xu MaoZhi
    Zhao ChunLai
    Feng Min
    Ren ZhaoRong
    Ye JiQing
    SCIENCE IN CHINA SERIES F-INFORMATION SCIENCES, 2008, 51 (03): : 258 - 272
  • [6] Zero Cycles on a Product of Elliptic Curves Over a p-adic Field
    Gazaki, Evangelia
    Leal, Isabel
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2022, 2022 (14) : 10586 - 10625
  • [7] Elliptic curves and Hilbert's tenth problem for algebraic function fields over real and p-adic fields
    Moret-Bailly, L
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2005, 587 : 77 - 143
  • [8] On the cycle map for products of elliptic curves over a p-adic field
    Hiranouchi, Toshiro
    Hirayama, Seiji
    ACTA ARITHMETICA, 2013, 157 (02) : 101 - 118
  • [9] Milnor K-groups and zero-cycles on products of curves over p-adic fields
    Raskind, W
    Spiess, M
    COMPOSITIO MATHEMATICA, 2000, 121 (01) : 1 - 33
  • [10] On p-adic point counting algorithms for elliptic curves over finite fields
    Satoh, T
    ALGORITHMIC NUMBER THEORY, 2002, 2369 : 43 - 66