In this paper a family of multi-dimensional fractional differential operators T-alpha and their corresponding pseudo-differential equations over p-adic fields are investigated. The test function class D(Q(p)(n)) and distribution class D'(Q(p)(n)) are invariant under the actions of these operators. The p-adic Laplacian Delta(p) and a fundamental solution of the Laplace equation are constructed. We study the spectral properties of the Laplacian Delta(p), and obtain an orthonormal basis of the eigen-functions of this operator in L-2(Q(p)(n)). Furthermore, the Cauchy problems for the wave and heat equations on the p-adic fields related to Delta(p) are also studied. (C) 2016 Elsevier Ltd. All rights reserved.
机构:
Univ Pierre & Marie Curie Paris 6, Inst Math Jussieu, F-75252 Paris 05, FranceUniv Pierre & Marie Curie Paris 6, Inst Math Jussieu, F-75252 Paris 05, France
Nekovar, Jan
Niziol, Wieslawa
论文数: 0引用数: 0
h-index: 0
机构:
Ecole Normale Super Lyon, Unite Math Pures & Appl, F-69364 Lyon 07, FranceUniv Pierre & Marie Curie Paris 6, Inst Math Jussieu, F-75252 Paris 05, France
Niziol, Wieslawa
Berger, Laurent
论文数: 0引用数: 0
h-index: 0
机构:
Ecole Normale Super Lyon, Unite Math Pures & Appl, F-69364 Lyon 07, FranceUniv Pierre & Marie Curie Paris 6, Inst Math Jussieu, F-75252 Paris 05, France
Berger, Laurent
Deglise, Frederic
论文数: 0引用数: 0
h-index: 0
机构:
Ecole Normale Super Lyon, Unite Math Pures & Appl, F-69364 Lyon 07, FranceUniv Pierre & Marie Curie Paris 6, Inst Math Jussieu, F-75252 Paris 05, France