On separable Fokker-Planck equations with a constant diagonal diffusion matrix

被引:1
|
作者
Zhalij, A [1 ]
机构
[1] Ukrainian Acad Sci, Inst Math, UA-252004 Kyiv, Ukraine
来源
关键词
D O I
10.1088/0305-4470/32/42/311
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We classify (1+3)-dimensional Fokker-Planck equations with a constant diagonal diffusion matrix that are solvable by the method of separation of variables. As a result, we get possible forms of the drift coefficients B-1((x) over right arrow), B-2((x) over right arrow), B-3((x) over right arrow) providing separability of the corresponding Fokker-Planck equations and carry out variable separation in the latter. It is established, in particular, that the necessary condition for the Fokker-Planck equation to be separable is that the drift coefficients (B) over right arrow((x) over right arrow) must be linear. We also find the necessary condition for R-separability of the Fokker-Planck equation. Furthermore, exact solutions of the Fokker-Planck equation with separated variables are constructed.
引用
收藏
页码:7393 / 7404
页数:12
相关论文
共 50 条
  • [41] Numerical solution for Fokker-Planck equations in accelerators
    Zorzano, MP
    Mais, H
    Vazquez, L
    PROCEEDINGS OF THE 1997 PARTICLE ACCELERATOR CONFERENCE, VOLS 1-3: PLENARY AND SPECIAL SESSIONS ACCELERATORS AND STORAGE RINGS - BEAM DYNAMICS, INSTRUMENTATION, AND CONTROLS, 1998, : 1825 - 1827
  • [42] ON FOKKER-PLANCK EQUATIONS WITH IN- AND OUTFLOW OF MASS
    Burger, Martin
    Humpert, Ina
    Pietschmann, Jan-Frederik
    KINETIC AND RELATED MODELS, 2020, 13 (02) : 249 - 277
  • [43] A numerical method for generalized Fokker-Planck equations
    Han, Weimin
    Li, Yi
    Sheng, Qiwei
    Tang, Jinping
    RECENT ADVANCES IN SCIENTIFIC COMPUTING AND APPLICATIONS, 2013, 586 : 171 - +
  • [44] Linearization of nonlinear Fokker-Planck equations and applications
    Ren, Panpan
    Roeckner, Michael
    Wang, Feng-Yu
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 322 : 1 - 37
  • [45] Generalized entropies and the Langevin and Fokker-Planck equations
    Akimoto, M
    Suzuki, A
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2002, 40 (06) : 974 - 978
  • [46] Nonlinear Fokker-Planck equations and generalized entropies
    Martinez, S
    Plastino, AR
    Plastino, A
    PHYSICA A, 1998, 259 (1-2): : 183 - 192
  • [47] Hypergeometric foundations of Fokker-Planck like equations
    Plastino, A.
    Rocca, M. C.
    PHYSICS LETTERS A, 2016, 380 (22-23) : 1900 - 1903
  • [48] TIME AVERAGES FOR KINETIC FOKKER-PLANCK EQUATIONS
    Brigati, Giovanni
    KINETIC AND RELATED MODELS, 2022, : 524 - 539
  • [49] Fokker-Planck approach to the microscopic diffusion theory
    Zaporozhets, TV
    Gusak, AM
    METALLOFIZIKA I NOVEISHIE TEKHNOLOGII, 1999, 21 (02): : 3 - 7
  • [50] FOKKER-PLANCK EQUATION AND ITS DIFFUSION APPROXIMATIONS
    ENGLADE, RC
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1971, 16 (12): : 1426 - &