On separable Fokker-Planck equations with a constant diagonal diffusion matrix

被引:1
|
作者
Zhalij, A [1 ]
机构
[1] Ukrainian Acad Sci, Inst Math, UA-252004 Kyiv, Ukraine
来源
关键词
D O I
10.1088/0305-4470/32/42/311
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We classify (1+3)-dimensional Fokker-Planck equations with a constant diagonal diffusion matrix that are solvable by the method of separation of variables. As a result, we get possible forms of the drift coefficients B-1((x) over right arrow), B-2((x) over right arrow), B-3((x) over right arrow) providing separability of the corresponding Fokker-Planck equations and carry out variable separation in the latter. It is established, in particular, that the necessary condition for the Fokker-Planck equation to be separable is that the drift coefficients (B) over right arrow((x) over right arrow) must be linear. We also find the necessary condition for R-separability of the Fokker-Planck equation. Furthermore, exact solutions of the Fokker-Planck equation with separated variables are constructed.
引用
下载
收藏
页码:7393 / 7404
页数:12
相关论文
共 50 条
  • [31] A class of Fokker-Planck equations with logarithmic factors in diffusion and drift terms
    Pesz, K
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (08): : 1827 - 1832
  • [32] Fokker-Planck equations for stochastic diffusion associated with Markovian electrochemical noise
    Grafov, B. M.
    RUSSIAN JOURNAL OF ELECTROCHEMISTRY, 2015, 51 (03) : 278 - 280
  • [33] Lie symmetries of Fokker-Planck equations with logarithmic diffusion and drift terms
    Silva, Erica M.
    Rocha, Tarcisio M.
    Santana, Ademir E.
    STATISTICAL PHYSICS OF AGEING PHENOMENA AND THE GLASS TRANSITION, 2006, 40 : 150 - +
  • [34] Structure preserving schemes for Fokker-Planck equations with nonconstant diffusion matrices
    Loy, Nadia
    Zanella, Mattia
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2021, 188 : 342 - 362
  • [35] NON-MARKOVIAN DIFFUSION AND FOKKER-PLANCK EQUATIONS FOR BROWNIAN OSCILLATORS
    ADELMAN, SA
    GARRISON, BJ
    MOLECULAR PHYSICS, 1977, 33 (06) : 1671 - 1681
  • [36] CHAOS-INDUCED DIFFUSION - ANALOGS TO NONLINEAR FOKKER-PLANCK EQUATIONS
    FUJISAKA, H
    GROSSMANN, S
    THOMAE, S
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 1985, 40 (09): : 867 - 873
  • [37] Steady States of Fokker-Planck Equations: III. Degenerate Diffusion
    Huang, Wen
    Ji, Min
    Liu, Zhenxin
    Yi, Yingfei
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2016, 28 (01) : 127 - 141
  • [38] Fokker-Planck equations for stochastic diffusion associated with Markovian electrochemical noise
    B. M. Grafov
    Russian Journal of Electrochemistry, 2015, 51 : 278 - 280
  • [39] Fokker–Planck–Kolmogorov equations with a partially degenerate diffusion matrix
    O. A. Manita
    M. S. Romanov
    S. V. Shaposhnikov
    Doklady Mathematics, 2017, 96 : 384 - 388
  • [40] Nonlinear Fokker-Planck equations and generalized entropies
    Martinez, S.
    Plastino, A.R.
    Plastino, A.
    Physica A: Statistical Mechanics and its Applications, 1998, 259 (1-2): : 183 - 192