Global normally hyperbolic invariant cylinders in Lagrangian systems

被引:10
|
作者
Cheng, Chong-Qing [1 ]
Zhou, Min [2 ]
机构
[1] Nanjing Univ, Dept Math, Nanjing 210093, Jiangsu, Peoples R China
[2] Nanjing Univ, Sch Informat Management, Nanjing 210093, Jiangsu, Peoples R China
关键词
D O I
10.4310/MRL.2016.v23.n3.a6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study Tonelli Lagrangian L is an element of C-r (TT2, R) with r >= 5. For a generic perturbation of Lagrangian L -> L + P where P is an element of C-r(T-2, R), we get simultaneous hyperbolicity of a family of minimal periodic orbits which share the same first homology class. Consequently, these periodic orbits make up one or more pieces of normally hyperbolic invariant cylinder in TT2.
引用
收藏
页码:685 / 705
页数:21
相关论文
共 50 条
  • [21] Lagrangian systems on hyperbolic manifolds
    Boyland, P
    Golé, C
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1999, 19 : 1157 - 1173
  • [23] A mechanism for detecting normally hyperbolic invariant tori in differential equations
    Pereira, Pedro C. C. R.
    Novaes, Douglas D.
    Candido, Murilo R.
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2023, 177 : 1 - 45
  • [24] Geometric properties of the scattering map of a normally hyperbolic invariant manifold
    Delshams, Amadeu
    de la Llave, Rafael
    Seara, Tere A.
    [J]. ADVANCES IN MATHEMATICS, 2008, 217 (03) : 1096 - 1153
  • [25] Computation of Quasiperiodic Normally Hyperbolic Invariant Tori: Rigorous Results
    Canadell, Marta
    Haro, Alex
    [J]. JOURNAL OF NONLINEAR SCIENCE, 2017, 27 (06) : 1869 - 1904
  • [26] TRANSITION MAP AND SHADOWING LEMMA FOR NORMALLY HYPERBOLIC INVARIANT MANIFOLDS
    Delshams, Amadeu
    Gidea, Marian
    Roldan, Pablo
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2013, 33 (03) : 1089 - 1112
  • [27] Computation of Quasiperiodic Normally Hyperbolic Invariant Tori: Rigorous Results
    Marta Canadell
    Àlex Haro
    [J]. Journal of Nonlinear Science, 2017, 27 : 1869 - 1904
  • [28] COVERING RELATIONS AND THE EXISTENCE OF TOPOLOGICALLY NORMALLY HYPERBOLIC INVARIANT SETS
    Capinski, Maciej J.
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2009, 23 (03) : 705 - 725
  • [29] Persistence of normally hyperbolic invariant manifolds in the absence of rate conditions
    Capinski, Maciej J.
    Kubica, Hieronim
    [J]. NONLINEARITY, 2020, 33 (09) : 4967 - 5005
  • [30] INVARIANT DOMAINS PRESERVING ARBITRARY LAGRANGIAN EULERIAN APPROXIMATION OF HYPERBOLIC SYSTEMS WITH CONTINUOUS FINITE ELEMENTS
    Guermond, Jean-Luc
    Popov, Bojan
    Saavedra, Laura
    Yang, Yong
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2017, 39 (02): : A385 - A414