TRANSITION MAP AND SHADOWING LEMMA FOR NORMALLY HYPERBOLIC INVARIANT MANIFOLDS

被引:21
|
作者
Delshams, Amadeu [1 ]
Gidea, Marian [2 ,3 ]
Roldan, Pablo [1 ]
机构
[1] ETSEIB UPC, Dept Matemat Aplicada 1, Barcelona 08028, Spain
[2] Inst Adv Study, Sch Math, Princeton, NJ 08540 USA
[3] NE Illinois Univ, Dept Math, Chicago, IL 60625 USA
基金
美国国家科学基金会;
关键词
Hamiltonian instability; Arnold diffusion; the three-body problem; HAMILTONIAN-SYSTEMS; SCATTERING MAP; ENERGY;
D O I
10.3934/dcds.2013.33.1089
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a given a normally hyperbolic invariant manifold, whose stable and unstable manifolds intersect transversally, we consider several tools and techniques to detect trajectories with prescribed itineraries: the scattering map, the transition map, the method of correctly aligned windows, and the shadowing lemma. We provide an user's guide on how to apply these tools and techniques to detect unstable orbits in Hamiltonian systems. This consists in the following steps: (i) computation of the scattering map and of the transition map for a flow, (ii) reduction to the scattering map and to the transition map, respectively, for the return map to some surface of section, (iii) construction of sequences of windows within the surface of section, with the successive pairs of windows correctly aligned, alternately, under the transition map, and under some power of the inner map, (iv) detection of trajectories which follow closely those windows. We illustrate this strategy with two models: the large gap problem for nearly integrable Hamiltonian systems, and the the spatial circular restricted three-body problem.
引用
收藏
页码:1089 / 1112
页数:24
相关论文
共 50 条
  • [1] A λ-lemma for normally hyperbolic invariant manifolds
    Cresson, Jacky
    Wiggins, Stephen
    [J]. REGULAR & CHAOTIC DYNAMICS, 2015, 20 (01): : 94 - 108
  • [2] A λ-lemma for normally hyperbolic invariant manifolds
    Jacky Cresson
    Stephen Wiggins
    [J]. Regular and Chaotic Dynamics, 2015, 20 : 94 - 108
  • [3] On the computation of normally hyperbolic invariant manifolds
    Broer, HW
    Osinga, HM
    Vegter, G
    [J]. NONLINEAR DYNAMICAL SYSTEMS AND CHAOS, 1996, 19 : 423 - 447
  • [4] An inclination lemma for normally hyperbolic manifolds with an application to diffusion
    Sabbagh, Lara
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2015, 35 : 2269 - 2291
  • [5] Approximate normally hyperbolic invariant manifolds for semiflows
    Bates, PW
    Lu, KN
    Zeng, CC
    [J]. PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON DIFFERENTIAL EQUATIONS AND COMPUTATIONAL SIMULATIONS, 2000, : 27 - 31
  • [6] Algorithms for computing normally hyperbolic invariant manifolds
    H.W. Broer;
    H.M. Osinga;
    G. Vegter;
    [J]. Zeitschrift für angewandte Mathematik und Physik ZAMP, 1997, 48 : 480 - 524
  • [7] NUMERICAL APPROXIMATION OF NORMALLY HYPERBOLIC INVARIANT MANIFOLDS
    Broer, Henk
    Hagen, Aaron
    Vegter, Gert
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2003, : 133 - 140
  • [8] Geometric proof for normally hyperbolic invariant manifolds
    Capinski, Maciej J.
    Zgliczynski, Piotr
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 259 (11) : 6215 - 6286
  • [9] Numerical continuation of normally hyperbolic invariant manifolds
    Broer, H. W.
    Hagen, A.
    Vegter, G.
    [J]. NONLINEARITY, 2007, 20 (06) : 1499 - 1534
  • [10] Algorithms for computing normally hyperbolic invariant manifolds
    Broer, HW
    Osinga, HM
    Vegter, G
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1997, 48 (03): : 480 - 524