Computation of Quasiperiodic Normally Hyperbolic Invariant Tori: Rigorous Results

被引:0
|
作者
Marta Canadell
Àlex Haro
机构
[1] Brown University,Institute for Computational and Experimental Research in Mathematics (ICERM)
[2] Universitat de Barcelona,Department de Matemàtiques i Informàtica
来源
关键词
Normally hyperbolic invariant manifolds; KAM theory; Computational dynamical systems; 37D10; 37E45; 37M99; 65P99;
D O I
暂无
中图分类号
学科分类号
摘要
The development of efficient methods for detecting quasiperiodic oscillations and computing the corresponding invariant tori is a subject of great importance in dynamical systems and their applications in science and engineering. In this paper, we prove the convergence of a new Newton-like method for computing quasiperiodic normally hyperbolic invariant tori carrying quasiperiodic motion in smooth families of real-analytic dynamical systems. The main result is stated as an a posteriori KAM-like theorem that allows controlling the inner dynamics on the torus with appropriate detuning parameters, in order to obtain a prescribed quasiperiodic motion. The Newton-like method leads to several fast and efficient computational algorithms, which are discussed and tested in a companion paper (Canadell and Haro in J Nonlinear Sci, 2017. doi:10.1007/s00332-017-9388-z), in which new mechanisms of breakdown are presented.
引用
收藏
页码:1869 / 1904
页数:35
相关论文
共 50 条
  • [1] Computation of Quasiperiodic Normally Hyperbolic Invariant Tori: Rigorous Results
    Canadell, Marta
    Haro, Alex
    [J]. JOURNAL OF NONLINEAR SCIENCE, 2017, 27 (06) : 1869 - 1904
  • [2] On the computation of normally hyperbolic invariant manifolds
    Broer, HW
    Osinga, HM
    Vegter, G
    [J]. NONLINEAR DYNAMICAL SYSTEMS AND CHAOS, 1996, 19 : 423 - 447
  • [3] A mechanism for detecting normally hyperbolic invariant tori in differential equations
    Pereira, Pedro C. C. R.
    Novaes, Douglas D.
    Candido, Murilo R.
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2023, 177 : 1 - 45
  • [4] Computation of Quasi-Periodic Normally Hyperbolic Invariant Tori: Algorithms, Numerical Explorations and Mechanisms of Breakdown
    Canadell, Marta
    Haro, Alex
    [J]. JOURNAL OF NONLINEAR SCIENCE, 2017, 27 (06) : 1829 - 1868
  • [5] Computation of Quasi-Periodic Normally Hyperbolic Invariant Tori: Algorithms, Numerical Explorations and Mechanisms of Breakdown
    Marta Canadell
    Àlex Haro
    [J]. Journal of Nonlinear Science, 2017, 27 : 1829 - 1868
  • [6] A parameterization method for the computation of invariant tori and their whiskers in quasi-periodic maps: Rigorous results
    Haro, A.
    de la Llave, R.
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2006, 228 (02) : 530 - 579
  • [7] Persistence Properties of Normally Hyperbolic Tori
    Henk Broer
    Heinz Hanßmann
    Florian Wagener
    [J]. Regular and Chaotic Dynamics, 2018, 23 : 212 - 225
  • [8] Persistence Properties of Normally Hyperbolic Tori
    Broer, Henk
    Hanssmann, Heinz
    Wagener, Florian
    [J]. REGULAR & CHAOTIC DYNAMICS, 2018, 23 (02): : 212 - 225
  • [9] Parameterization Method for Computing Quasi-periodic Reducible Normally Hyperbolic Invariant Tori
    Canadell, Marta
    Haro, Alex
    [J]. ADVANCES IN DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2014, 4 : 85 - 94
  • [10] The hyperbolic invariant tori of symplectic mappings
    Zhu, Wenzhuang
    Liu, Baifeng
    Liu, Zhenxin
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 68 (01) : 109 - 126