Water-energy nexus: retrofitting urban areas to achieve zero pollution

被引:24
|
作者
Novotny, Vladimir [1 ]
机构
[1] AquaNova LLC, Minneapolis, MN 55401 USA
来源
BUILDING RESEARCH AND INFORMATION | 2013年 / 41卷 / 05期
关键词
cities; drainage; retrofit; sustainable urban design; urban planning; water conservation; water-energy nexus; watershed management; HYDROGEN-PRODUCTION; METABOLISM; RECOVERY;
D O I
10.1080/09613218.2013.804764
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
A major paradigm shift is examined for building new and retrofitting historic communities striving towards appropriate consumption of resources and reduced pollution: reusing and recycling water; recovering energy, nutrients, and other resources from used water and solids; attaining a sustainable use of water resources; and attaining net zero greenhouse gas (GHG) emissions targets. The key global and regional footprints identifying the trends towards the sustainable water-energy nexus in future ecocities are defined. Three scales are examined: domestic (individual building), cluster (ecoblock) and regional levels. An integrated approach to urban design and the use of water resources is presented. The future hybrid (partially closed) system would reclaim clean water, nutrients and other resources, and produce additional energy. Methane- and hydrogen-based energy recovery and conversion to electricity in an integrated resource recovery processes are proposed. The triple bottom line analysis and willingness to pay can be used to determine quantitative social values of non-market commodities (i.e. ecological enhancement, sustainability, improvements in water quality and aesthetic assets, and the reduction of GHGs emissions). Urban retrofit solutions are outlined for reducing water use, creating net zero GHGs, eliminating pollution, and generating financial revenue through the recycling and recovery of resources.
引用
收藏
页码:589 / 604
页数:16
相关论文
共 50 条
  • [21] The Water-Energy Nexus in Water and Wastewater Treatment
    Maxwell, Steve
    JOURNAL AMERICAN WATER WORKS ASSOCIATION, 2016, 108 (07): : 20 - +
  • [22] Visualizing water-energy nexus landscapes
    Robb, Douglas
    Cole, Harrison
    Baka, Jennifer
    Bakker, Karen
    WILEY INTERDISCIPLINARY REVIEWS-WATER, 2021, 8 (06):
  • [23] Modeling the water-energy nexus in households
    Hadengue, Bruno
    Scheidegger, Andreas
    Morgenroth, Eberhard
    Larsen, Tove A.
    ENERGY AND BUILDINGS, 2020, 225
  • [24] The Water-Energy Nexus in the American West
    Lasserre, Frederic
    ETUDES INTERNATIONALES, 2013, 44 (01): : 148 - 149
  • [25] Meeting the Needs of the Water-Energy Nexus
    Desai, Snehal
    Klanecky, David A.
    CHEMICAL ENGINEERING PROGRESS, 2011, 107 (04) : 22 - 27
  • [26] Evaluation of the effect of the water-energy nexus on the performance of the water-energy supply system
    Golfam, Parvin
    Ashofteh, Parisa-Sadat
    Environmental Science and Pollution Research, 2025, 32 (07) : 4040 - 4060
  • [27] WATER-ENERGY NEXUS Breaking the spell
    Davies, Evan G. R.
    NATURE ENERGY, 2018, 3 (09): : 716 - 717
  • [28] Technology and Engineering of the Water-Energy Nexus
    Rao, Prakash
    Kostecki, Robert
    Dale, Larry
    Gadgil, Ashok
    ANNUAL REVIEW OF ENVIRONMENT AND RESOURCES, VOL 42, 2017, 42 : 407 - 437
  • [29] Senate Examines Water-Energy Nexus
    不详
    MECHANICAL ENGINEERING, 2012, 134 (09) : 18 - 18
  • [30] Balancing the Scales with The Water-Energy Nexus
    McGowan, Mary Kate
    ASHRAE JOURNAL, 2017, 59 (09) : 40 - 42