Lattice Wigner equation

被引:6
|
作者
Solorzano, S. [1 ]
Mendoza, M. [1 ]
Succi, S. [2 ,3 ]
Herrmann, H. J. [1 ]
机构
[1] Swiss Fed Inst Technol, Inst Bldg Mat, Computat Phys Engn Mat, Wolfgang Pauli Str 27, CH-8093 Zurich, Switzerland
[2] CNR, Ist Applicaz Calcolo, Via Taurini 19, I-00185 Rome, Italy
[3] Harvard Univ, Inst Adv Computat Sci, 29 Oxford St, Cambridge, MA 02138 USA
基金
欧洲研究理事会;
关键词
BOLTZMANN-EQUATION; TRANSPORT-EQUATION; QUANTUM-MECHANICS; SPECTRAL METHOD; GAS AUTOMATA; EQUILIBRIUM; SIMULATIONS;
D O I
10.1103/PhysRevE.97.013308
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We present a numerical scheme to solve the Wigner equation, based on a lattice discretization of momentum space. The moments of the Wigner function are recovered exactly, up to the desired order given by the number of discrete momenta retained in the discretization, which also determines the accuracy of the method. The Wigner equation is equipped with an additional collision operator, designed in such a way as to ensure numerical stability without affecting the evolution of the relevant moments of the Wigner function. The lattice Wigner scheme is validated for the case of quantum harmonic and anharmonic potentials, showing good agreement with theoretical results. It is further applied to the study of the transport properties of one- and two-dimensional open quantum systems with potential barriers. Finally, the computational viability of the scheme for the case of three-dimensional open systems is also illustrated.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Wigner functions on a lattice
    Takami, A
    Hashimoto, T
    Horibe, M
    Hayashi, A
    PHYSICAL REVIEW A, 2001, 64 (03): : 6
  • [2] Polaron in the Wigner lattice
    Lenac, Z
    Sunjic, M
    PHYSICAL REVIEW B, 1999, 59 (10): : 6752 - 6761
  • [3] Wigner functions on a lattice
    Takami, A.
    Hashimoto, T.
    Horibe, M.
    Hayashi, A.
    Physical Review A. Atomic, Molecular, and Optical Physics, 2001, 64 (03): : 1 - 032114
  • [4] On superstability of the Wigner equation
    Ilisevic, Dijana
    Turnsek, Aleksej
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2018, 542 : 391 - 401
  • [5] On a conditional Wigner equation
    J. Chmieliński
    aequationes mathematicae, 1998, 56 (1-2) : 143 - 148
  • [6] On lattice sums and Wigner limits
    Borwein, David
    Borwein, Jonathan M.
    Straub, Armin
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 414 (02) : 489 - 513
  • [7] PHASE TRANSITION IN A WIGNER LATTICE
    FOLDY, LL
    PHYSICAL REVIEW B, 1971, 3 (10): : 3472 - &
  • [8] Scattering theory for the Wigner equation
    Emamirad, H
    Rogeon, P
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2005, 28 (08) : 947 - 960
  • [9] Adding Decoherence to the Wigner Equation
    Barletti, Luigi
    Frosali, Giovanni
    Giovannini, Elisa
    JOURNAL OF COMPUTATIONAL AND THEORETICAL TRANSPORT, 2018, 47 (1-3) : 209 - 225
  • [10] MELTING OF THE WIGNER LATTICE AT T=0
    LENAC, Z
    SUNJIC, M
    PHYSICAL REVIEW B, 1995, 52 (15): : 11238 - 11247