Conditional edge-fault pancyclicity of augmented cubes

被引:14
|
作者
Cheng, Dongqin [1 ]
Hao, Rong-Xia [1 ]
Feng, Yan-Quan [1 ]
机构
[1] Beijing Jiaotong Univ, Dept Math, Beijing 100044, Peoples R China
关键词
Augmented cubes; Pancyclicity; Fault-tolerant embedding; Faulty edges; Interconnection network; TOLERANT PANCONNECTIVITY; GEODESIC-PANCYCLICITY; HYPERCUBE; HAMILTONICITY; VERTICES; CYCLES;
D O I
10.1016/j.tcs.2013.09.010
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The augmented cube AQ(n) proposed by Choudum and Sunitha [7], is a variation of the hypercube Q(n) and possesses many superior properties that the hypercube does not contain. In this paper, we show that, any n-dimensional augmented cube with at most 4n - 12 faulty edges contains cycles of lengths from 3 to 2(n) under the condition that every node is incident with at least two fault-free edges, where n >= 3. Ma et al. [21] obtained the same result but with the number of faulty edges up to 2n - 3. Our result improves Ma et al.'s result in terms of the number of fault-tolerant edges. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:94 / 101
页数:8
相关论文
共 50 条
  • [21] Fault-Tolerant Hamiltonicity of Augmented Cubes under the Conditional Fault Model
    Hsieh, Sun-Yuan
    Cian, Yi-Ru
    ALGORITHMS AND ARCHITECTURES FOR PARALLEL PROCESSING, PROCEEDINGS, 2009, 5574 : 673 - 683
  • [22] On the fault-tolerant pancyclicity of crossed cubes
    Huang, WT
    Chen, WK
    Chen, CH
    NINTH INTERNATIONAL CONFERENCE ON PARALLEL AND DISTRIBUTED SYSTEMS, PROCEEDINGS, 2002, : 483 - 488
  • [23] Edge-pancyclicity and Hamiltonian connectivity of twisted cubes
    Min Xu
    Acta Mathematica Sinica, English Series, 2010, 26 : 1315 - 1322
  • [24] (n-2)-Fault-Tolerant Edge-Pancyclicity of Crossed Cubes CQn
    Xu, Xirong
    Zhang, Huifeng
    Wang, Ziming
    Zhang, Qiang
    Zhang, Peng
    INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE, 2021, 32 (03) : 289 - 304
  • [25] Conditional edge-fault hamiltonian-connectivity of restricted hypercube-like networks
    Hsieh, Sun-Yuan
    Lee, Chia-Wei
    Huang, Chien-Hsiang
    INFORMATION AND COMPUTATION, 2016, 251 : 314 - 334
  • [26] Edge-pancyclicity and Hamiltonian connectivity of twisted cubes
    Xu, Min
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2010, 26 (07) : 1315 - 1322
  • [27] Edge-Pancyclicity and Hamiltonian Connectivity of Twisted Cubes
    Min XU School of Mathematical Sciences
    Acta Mathematica Sinica(English Series), 2010, 26 (07) : 1315 - 1322
  • [28] Weakly Edge-Pancyclicity of Locally Twisted Cubes
    Ma, Meijie
    Xu, Jun-Ming
    ARS COMBINATORIA, 2008, 89 : 89 - 94
  • [29] Two-Disjoint-Cycle-Cover Pancyclicity of Augmented Cubes
    Zhou, Shu-Jie
    Xu, Min
    JOURNAL OF THE OPERATIONS RESEARCH SOCIETY OF CHINA, 2023,
  • [30] Vertex-pancyclicity of augmented cubes with maximal faulty edges
    Fu, Jung-Sheng
    INFORMATION SCIENCES, 2014, 275 : 257 - 266