Conditional edge-fault hamiltonian-connectivity of restricted hypercube-like networks

被引:14
|
作者
Hsieh, Sun-Yuan [1 ,2 ,3 ]
Lee, Chia-Wei [1 ]
Huang, Chien-Hsiang [1 ]
机构
[1] Natl Cheng Kung Univ, Dept Comp Sci & Informat Engn, 1 Univ Rd, Tainan 701, Taiwan
[2] Natl Cheng Kung Univ, Inst Med Informat, 1 Univ Rd, Tainan 701, Taiwan
[3] Natl Cheng Kung Univ, Inst Mfg Informat & Syst, 1 Univ Rd, Tainan 701, Taiwan
关键词
Conditional edge faults; Graph theory; Hamiltonian-connectivity; Interconnection networks; Multiprocessor systems; Restricted hypercube-like networks; DISJOINT PATH COVERS; RECURSIVE CIRCULANTS; STAR GRAPH; EMBEDDINGS; CYCLES; LINK; PANCONNECTIVITY; PANCYCLICITY; CUBES;
D O I
10.1016/j.ic.2016.10.002
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A graph G is considered conditional k-edge-fault hamiltonian-connected if, after k faulty edges are removed from G, under the assumption that each node is incident to at least three fault-free edges, a hamiltonian path exists between any two distinct nodes in the resulting graph. This paper focuses on the conditional edge-fault hamiltonian-connectivity of a wide class of interconnection networks called restricted hypercube-like networks (RFILs). An n-dimensional RHL (RHLn) is proved to be conditional (2n-7)-edge-fault hamiltonianconnected for n >= 5. The technical theorem proposed in this paper is then applied to show that several multiprocessor systems, including n-dimensional crossed cubes, n-dimensional twisted cubes for odd n, n-dimensional locally twisted cubes, n-dimensional generalized twisted cubes, n-dimensional Mobius cubes, and recursive circulants G(2(n), 4) for odd n, are all conditional (2n-7)-edge-fault hamiltonian-connected. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:314 / 334
页数:21
相关论文
共 50 条
  • [1] Hamiltonian connectivity of restricted hypercube-like networks under the conditional fault model
    Dong, Qiang
    Zhou, Junlin
    Fu, Yan
    Gao, Hui
    [J]. THEORETICAL COMPUTER SCIENCE, 2013, 472 : 46 - 59
  • [2] Edge-fault tolerance of hypercube-like networks
    Li, Xiang-Jun
    Xu, Jun-Ming
    [J]. INFORMATION PROCESSING LETTERS, 2013, 113 (19-21) : 760 - 763
  • [3] PANCYCLICITY OF RESTRICTED HYPERCUBE-LIKE NETWORKS UNDER THE CONDITIONAL FAULT MODEL
    Hsieh, Sun-Yuan
    Lee, Chia-Wei
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2010, 23 (04) : 2100 - 2119
  • [4] Extra edge connectivity of hypercube-like networks
    Hong, Won-Sin
    Hsieh, Sun-Yuan
    [J]. INTERNATIONAL JOURNAL OF PARALLEL EMERGENT AND DISTRIBUTED SYSTEMS, 2013, 28 (02) : 123 - 133
  • [5] Component edge connectivity of hypercube-like networks
    Liu, Dong
    Li, Pingshan
    Zhang, Bicheng
    [J]. THEORETICAL COMPUTER SCIENCE, 2022, 911 : 19 - 25
  • [6] Fault-Tolerant Hamiltonian Connectivity of Twisted Hypercube-Like Networks THLNs
    Zhang, Huifeng
    Xu, Xirong
    Guo, Jing
    Yang, Yuansheng
    [J]. IEEE ACCESS, 2018, 6 : 74081 - 74090
  • [7] FAULT-TOLERANT HAMILTONIAN LACEABILITY AND FAULT-TOLERANT CONDITIONAL HAMILTONIAN FOR BIPARTITE HYPERCUBE-LIKE NETWORKS
    Lin, Cheng-Kuan
    Ho, Tung-Yang
    Tan, Jimmy J. M.
    Hsu, Lih-Hsing
    [J]. JOURNAL OF INTERCONNECTION NETWORKS, 2009, 10 (03) : 243 - 251
  • [8] The Edge-fault Tolerant Hamiltonian of the Balanced Hypercube
    Cao, Jianxiang
    Shang, Wenqian
    Shi, Minyong
    [J]. 2016 IEEE/ACIS 15TH INTERNATIONAL CONFERENCE ON COMPUTER AND INFORMATION SCIENCE (ICIS), 2016, : 1129 - 1133
  • [9] Edge-fault-tolerant strong Menger edge connectivity on the class of hypercube-like networks
    Li, Pingshan
    Xu, Min
    [J]. DISCRETE APPLIED MATHEMATICS, 2019, 259 : 145 - 152
  • [10] Strong Menger connectivity with conditional faults on the class of hypercube-like networks
    Shih, Lun-Min
    Chiang, Chieh-Feng
    Hsu, Lih-Hsing
    Tan, Jimmy J. M.
    [J]. INFORMATION PROCESSING LETTERS, 2008, 106 (02) : 64 - 69