Conditional edge-fault pancyclicity of augmented cubes

被引:14
|
作者
Cheng, Dongqin [1 ]
Hao, Rong-Xia [1 ]
Feng, Yan-Quan [1 ]
机构
[1] Beijing Jiaotong Univ, Dept Math, Beijing 100044, Peoples R China
关键词
Augmented cubes; Pancyclicity; Fault-tolerant embedding; Faulty edges; Interconnection network; TOLERANT PANCONNECTIVITY; GEODESIC-PANCYCLICITY; HYPERCUBE; HAMILTONICITY; VERTICES; CYCLES;
D O I
10.1016/j.tcs.2013.09.010
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The augmented cube AQ(n) proposed by Choudum and Sunitha [7], is a variation of the hypercube Q(n) and possesses many superior properties that the hypercube does not contain. In this paper, we show that, any n-dimensional augmented cube with at most 4n - 12 faulty edges contains cycles of lengths from 3 to 2(n) under the condition that every node is incident with at least two fault-free edges, where n >= 3. Ma et al. [21] obtained the same result but with the number of faulty edges up to 2n - 3. Our result improves Ma et al.'s result in terms of the number of fault-tolerant edges. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:94 / 101
页数:8
相关论文
共 50 条
  • [31] Conditional edge-fault-tolerant Hamiltonicity of dual-cubes
    Chen, Jheng-Cheng
    Tsai, Chang-Hsiung
    INFORMATION SCIENCES, 2011, 181 (03) : 620 - 627
  • [32] FAULT TOLERANCE OF AUGMENTED CUBES
    Ma, Meijie
    Song, Yaxing
    Xu, Jun-Ming
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2013, 10 (01) : 37 - 55
  • [33] Two-disjoint-cycle-cover vertex pancyclicity of augmented cubes
    Qiao, Hongwei
    Meng, Jixiang
    THEORETICAL COMPUTER SCIENCE, 2023, 958
  • [34] Fault hamiltonicity of augmented cubes
    Hsu, HC
    Chiang, LC
    Tan, JJM
    Hsu, LH
    PARALLEL COMPUTING, 2005, 31 (01) : 131 - 145
  • [35] The Edge-fault Tolerant Hamiltonian of the Balanced Hypercube
    Cao, Jianxiang
    Shang, Wenqian
    Shi, Minyong
    2016 IEEE/ACIS 15TH INTERNATIONAL CONFERENCE ON COMPUTER AND INFORMATION SCIENCE (ICIS), 2016, : 1129 - 1133
  • [36] Pancyclicity of Mobius cubes
    Huang, WT
    Chen, WK
    Chen, CH
    NINTH INTERNATIONAL CONFERENCE ON PARALLEL AND DISTRIBUTED SYSTEMS, PROCEEDINGS, 2002, : 591 - 596
  • [37] Edge-fault-tolerant hamiltonicity of locally twisted cubes under conditional edge faults
    Sun-Yuan Hsieh
    Chang-Yu Wu
    Journal of Combinatorial Optimization, 2010, 19 : 16 - 30
  • [38] Edge-fault-tolerant hamiltonicity of locally twisted cubes under conditional edge faults
    Hsieh, Sun-Yuan
    Wu, Chang-Yu
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2010, 19 (01) : 16 - 30
  • [39] Edge-bipancyclicity of star graphs under edge-fault tolerant
    Xu, Min
    Hu, Xiao-Dong
    Zhu, Qiang
    APPLIED MATHEMATICS AND COMPUTATION, 2006, 183 (02) : 972 - 979
  • [40] Fault-Tolerant Maximal Local-Edge-Connectivity of Augmented Cubes
    Zhai, Liyang
    Xu, Liqiong
    Yang, Weihua
    PARALLEL PROCESSING LETTERS, 2020, 30 (03)