Efficient squaring circuit using canonical signed-digit number representation

被引:1
|
作者
Tanaka, Yuuki [1 ]
Wei, Shugang [1 ]
机构
[1] Gunma Univ, Fac Sci & Technol, Div Mech Sci & Technol, Ota Ku, Gunma 3730057, Japan
来源
IEICE ELECTRONICS EXPRESS | 2014年 / 11卷 / 02期
关键词
canonical SD number; squaring circuit;
D O I
10.1587/elex.11.20130955
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Squaring and exponentiation of a number are fundamental arithmetic and widely used in the real-time applications such as image processing, digital filtering and cryptography. In this paper, we propose a squaring algorithm of an integer with canonical signed-digit (CSD) number representation. For an n-digit CSD number, our method generates n/4 CSD numbers of 2n-digit length as partial products. This result is half with respect to the conventional squaring algorithms. We implement the squaring circuit based on this algorithm and compare with some existing circuits. Our circuit is 40% faster than the known squaring circuit for binary numbers.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Residue arithmetic circuits using a signed-digit number representation
    Wei, SG
    Shimizu, K
    [J]. ISCAS 2000: IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS - PROCEEDINGS, VOL I: EMERGING TECHNOLOGIES FOR THE 21ST CENTURY, 2000, : 24 - 27
  • [2] PHOTONIC COMPUTING USING THE MODIFIED SIGNED-DIGIT NUMBER REPRESENTATION
    DRAKE, BL
    BOCKER, RP
    LASHER, ME
    PATTERSON, RH
    MICELI, WJ
    [J]. OPTICAL ENGINEERING, 1986, 25 (01) : 38 - 43
  • [3] A novel residue arithmetic hardware algorithm using a signed-digit number representation
    Wei, SG
    Shimizu, K
    [J]. IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2000, E83D (12) : 2056 - 2064
  • [4] Booth memoryless modular multiplier with signed-digit number representation
    Chen, SC
    Wei, SG
    Shimizu, K
    [J]. PROCEEDINGS OF THE 2004 IEEE ASIA-PACIFIC CONFERENCE ON CIRCUITS AND SYSTEMS, VOL 1 AND 2: SOC DESIGN FOR UBIQUITOUS INFORMATION TECHNOLOGY, 2004, : 21 - 24
  • [5] Randomness with respect to the signed-digit representation
    Archibald, Margaret
    Brattka, Vasco
    Heuberger, Clemens
    [J]. FUNDAMENTA INFORMATICAE, 2008, 83 (1-2) : 1 - 19
  • [6] Modular Multipliers Using a Modified Residue Addition Algorithm with Signed-Digit Number Representation
    Wei, Shugang
    [J]. IMECS 2009: INTERNATIONAL MULTI-CONFERENCE OF ENGINEERS AND COMPUTER SCIENTISTS, VOLS I AND II, 2009, : 494 - 499
  • [7] BOOTH ALGORITHM IN SIGNED-DIGIT REPRESENTATION
    Ayuso Perez, Jesus
    [J]. 3C TIC, 2016, 5 (03): : 33 - 43
  • [8] A high-speed binary to residue converter using a signed-digit number representation
    Syuto, M
    Satake, E
    Tanno, K
    Ishizuka, O
    [J]. IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2002, E85D (05) : 903 - 905
  • [9] Crossover and mutation in genetic algorithms employing canonical signed-digit number system
    Ashrafzadeh, F
    Nowrouzian, B
    [J]. 40TH MIDWEST SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOLS 1 AND 2, 1998, : 702 - 705
  • [10] An Efficient Diminished-1 Modulo 2n+1 Multiplier Using Signed-Digit Number Representation
    Tanaka, Yuuki
    Wei, Shugang
    [J]. TENCON 2015 - 2015 IEEE REGION 10 CONFERENCE, 2015,