InGaP/GaAsSb/InGaAsSb double heterojunction bipolar transistors with 703-GHz fmax and 5.4-V breakdown voltage

被引:7
|
作者
Hoshi, Takuya [1 ]
Kashio, Norihide [2 ]
Shiratori, Yuta [1 ]
Kurishima, Kenji [1 ]
Ida, Minoru [1 ]
Matsuzaki, Hideaki [1 ]
机构
[1] NTT Corp, NTT Device Technol Labs, 3-1 Morinosato Wakamiya, Atsugi, Kanagawa 2430198, Japan
[2] NTT Corp, NTT Device Innovat Ctr, 3-1 Morinosato Wakamiya, Atsugi, Kanagawa 2430198, Japan
来源
IEICE ELECTRONICS EXPRESS | 2019年 / 16卷 / 03期
关键词
InP DHBT; InGaP emitter; graded InGaAsSb base; high current gain; maximum oscillation frequency; breakdown voltage; DHBTS;
D O I
10.1587/elex.16.20181125
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This letter presents the current-gain and high-frequency characteristics of double heterojunction bipolar transistors (DHBTs) consisting of an n-InGaP emitter, a p-GaAsSb/p-InGaAsSb base, and an n-InP collector. The impact of the thickness of the first base metal (Pt) on the base contact resistivity is investigated in a p-GaAsSb/p-InGaAsSb test structure for the purpose of improving f(max). A low base contact resistivity (4.8 Omega mu m(2)) is obtained when the Pt layer is thinner than the p-GaAsSb layer. A fabricated InGaP/GaAsSb/InGaAsSb DHBT with a 0.25-mu m emitter exhibits a high current gain of 33 even though the base sheet resistance is as low as 1025 Omega/sq. The DHBT also exhibits an f(max) of 703 GHz and a breakdown voltage of 5.4 V. These results demonstrate that this DHBT technology is useful for fabricating high-speed integrated circuits with high output voltages.
引用
收藏
页数:6
相关论文
共 28 条
  • [1] InGaP/GaAsSb/InGaAsSb/InP Double Heterojunction Bipolar Transistors With Record ft of 813 GHz
    Shiratori, Yuta
    Hoshi, Takuya
    Matsuzaki, Hideaki
    IEEE ELECTRON DEVICE LETTERS, 2020, 41 (05) : 697 - 700
  • [2] Type-II InGaAsSb-Base Double Heterojunction Bipolar Transistors Simultaneously Exhibiting over 600-GHz fmax and 5-V Breakdown Voltage
    Kashio, Norihide
    Hoshi, Takuya
    Kurishima, Kenji
    Ida, Minoru
    Matsuzaki, Hideaki
    IEICE TRANSACTIONS ON ELECTRONICS, 2016, E99C (05): : 522 - 527
  • [3] Type-II InP/GaAsSb double-heterojunction bipolar transistors with fMAX > 700 GHz
    Flueckiger, Ralf
    Loevblom, Rickard
    Alexandrova, Maria
    Ostinelli, Olivier
    Bolognesi, Colombo R.
    APPLIED PHYSICS EXPRESS, 2014, 7 (03)
  • [4] InP/InGaAs double heterojunction bipolar transistors with BVCEO=12 V and fmax=470 GHz
    Kashio, N.
    Kurishima, K.
    Ida, M.
    Matsuzaki, H.
    ELECTRONICS LETTERS, 2015, 51 (08) : 648 - 649
  • [5] Current transport mechanism in InGaP/GaAsSb/GaAs double-heterojunction bipolar transistors
    Yan, BP
    Hsu, CC
    Wang, XQ
    Yang, ES
    APPLIED PHYSICS LETTERS, 2004, 85 (17) : 3884 - 3886
  • [6] InGaAs/InP Double Heterojunction Bipolar Transistors with fmax=532GHz
    Cheng Wei
    Wang Yuan
    Niu Bin
    Xie Zi-Li
    Xie Jun-Ling
    Lu Hai-Yan
    Zhao Yan
    Sun Yan
    Chen Tang-Sheng
    2015 IEEE MTT-S INTERNATIONAL MICROWAVE WORKSHOP SERIES ON ADVANCED MATERIALS AND PROCESSES FOR RF AND THZ APPLICATIONS (IMWS-AMP), 2015, : 446 - 448
  • [7] InP/InGaAs/InP Double Heterojunction Bipolar Transistors with 300 GHz Fmax
    Krishnan, S
    Dahlstrom, M
    Mathew, T
    Wei, Y
    Scott, D
    Urteaga, M
    Rodwell, MJW
    Liu, WK
    Lubyshev, D
    Fang, XM
    Wu, Y
    2001 INTERNATIONAL CONFERENCE ON INDIUM PHOSPHIDE AND RELATED MATERIALS, CONFERENCE PROCEEDINGS, 2001, : 31 - 34
  • [8] Current Gain and Offset Voltage in an InGaP/GaAsSb/GaAs Double Heterojunction Bipolar Transistor
    Lin, Yu-Shyan
    Ng, Shao-Bin
    Yu, Wen-Fu
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2012, 59 (12) : 3339 - 3343
  • [9] High breakdown voltage InGaAs/InP double heterojunction bipolar transistors with f;=256 GHz and BV;= 8.3 V
    程伟
    赵岩
    高汉超
    陈辰
    杨乃彬
    半导体学报, 2012, 33 (01) : 56 - 58
  • [10] Thermal stability of current gain in InGaP/GaAsSb/GaAs double-heterojunction bipolar transistors
    Yan, BP
    Hsu, CC
    Wang, XQ
    Yang, ES
    APPLIED PHYSICS LETTERS, 2004, 85 (19) : 4505 - 4507