GaN Schottky Barrier Photodetectors with a β-Ga2O3 Cap Layer

被引:4
|
作者
Huang, Zhen-Da [1 ,2 ]
Chuang, Ricky Wenkuei [1 ,2 ,3 ,4 ,5 ]
Weng, Wen-Yin [1 ,2 ]
Chang, Shoou-Jinn [1 ,2 ,3 ,4 ]
Chiu, Chiu-Jung [1 ,2 ]
Wu, San-Lein [6 ]
机构
[1] Natl Cheng Kung Univ, Inst Microelect, Tainan 70101, Taiwan
[2] Natl Cheng Kung Univ, Dept Elect Engn, Tainan 70101, Taiwan
[3] Natl Cheng Kung Univ, Ctr Micro Nano Sci & Technol, Tainan 70101, Taiwan
[4] Natl Cheng Kung Univ, AOTC, Tainan 70101, Taiwan
[5] Natl Nano Device Labs NDL, Tainan 74147, Taiwan
[6] Cheng Shiu Univ, Dept Elect Engn, Kaohsiung 833, Taiwan
关键词
N-TYPE GAN; THIN-FILMS; ULTRAVIOLET PHOTODETECTORS; THREADING DISLOCATIONS; DETECTORS; PERFORMANCE; DEPOSITION; EPITAXY; GROWTH;
D O I
10.1143/APEX.5.116701
中图分类号
O59 [应用物理学];
学科分类号
摘要
GaN Schottky barrier UV photodetectors (PDs) with a beta-Ga2O3 cap layer realized by furnace oxidation of GaN epitaxial layer were fabricated and characterized. With the cap layer inserted, it was found that the reverse leakage current could be reduced by more than 4 orders of magnitude and the UV-to-visible rejection ratio increased by 21 times. When compared with the conventional GaN PDs, incorporating an additional beta-Ga2O3 cap layer helps to reduce the noise level and at the same time achieve a larger detectivity. (C) 2012 The Japan Society of Applied Physics
引用
收藏
页数:3
相关论文
共 50 条
  • [21] High Performance (001) β-Ga2O3 Schottky Barrier Diode
    Wang, Y. G.
    Lv, Y. J.
    Zhou, X. Y.
    Guo, H. Y.
    Song, X. B.
    Tan, X.
    Liang, S. X.
    Fang, Y. L.
    Feng, Z. H.
    Cai, S. J.
    2018 15TH CHINA INTERNATIONAL FORUM ON SOLID STATE LIGHTING: INTERNATIONAL FORUM ON WIDE BANDGAP SEMICONDUCTORS CHINA (SSLCHINA: IFWS), 2018, : 103 - 104
  • [22] Transient thermal characterization of β-Ga2O3 Schottky barrier diodes
    Seki, Shota
    Funaki, Tsuyoshi
    Arima, Jun
    Fujita, Minoru
    Hirabayashi, Jun
    Hanabusa, Kazuyoshi
    IEICE ELECTRONICS EXPRESS, 2022, 19 (06):
  • [23] Ga2O3 Schottky Barrier Diodes Fabricated by Using Single-Crystal β-Ga2O3 (010) Substrates
    Sasaki, Kohei
    Higashiwaki, Masataka
    Kuramata, Akito
    Masui, Takekazu
    Yamakoshi, Shigenobu
    IEEE ELECTRON DEVICE LETTERS, 2013, 34 (04) : 493 - 495
  • [24] AlGaN/GaN Schottky Barrier UV Photodetectors With a GaN Sandwich Layer
    Lee, K. H.
    Chang, P. C.
    Chang, S. J.
    Wang, Y. C.
    Yu, C. L.
    Wu, S. L.
    IEEE SENSORS JOURNAL, 2009, 9 (07) : 814 - 819
  • [25] Temperature dependence of barrier height inhomogeneity in β-Ga2O3 Schottky barrier diodes
    Jadhav, Aakash
    Lyle, Luke A. M.
    Xu, Ziyi
    Das, Kalyan K.
    Porter, Lisa M.
    Sarkar, Biplab
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2021, 39 (04):
  • [26] GaN Schottky Barrier Photodetectors
    Chang, S. J.
    Wang, S. M.
    Chang, P. C.
    Kuo, C. H.
    Young, S. J.
    Chen, T. P.
    Wu, S. L.
    Huang, B. R.
    IEEE SENSORS JOURNAL, 2010, 10 (10) : 1609 - 1614
  • [27] AlGaN-GaN Schottky-barrier photodetectors with LT GaN cap layers
    Ko, TK
    Chang, SJ
    Su, YK
    Lee, ML
    Chang, CS
    Lin, YC
    Shei, SC
    Sheu, JK
    Chen, WS
    Shen, CF
    JOURNAL OF CRYSTAL GROWTH, 2005, 283 (1-2) : 68 - 71
  • [28] Reduction of dark current in AlGaN/GaN Schottky barrier photodetectors with a low-temperature-grown GaN cap layer
    Chi, GC
    Sheu, JK
    Lee, ML
    Kao, CJ
    Su, YK
    Chang, SJ
    Lai, WC
    GAN AND RELATED ALLOYS - 2003, 2003, 798 : 353 - 358
  • [29] Properties of Schottky barrier diodes on heteroeptixial α-Ga2O3 thin films
    Koepp, S.
    Petersen, C.
    Splith, D.
    Grundmann, M.
    von Wenckstern, H.
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2023, 41 (04):
  • [30] Ga2O3 Schottky barrier and heterojunction diodes for power electronics applications
    Tadjer, Marko J.
    Mahadik, Nadeemullah A.
    Freitas, Jaime A., Jr.
    Glaser, Evan R.
    Koehler, Andrew D.
    Luna, Lunet E.
    Feigelson, Boris N.
    Hobart, Karl D.
    Kub, Fritz J.
    Kuramata, A.
    GALLIUM NITRIDE MATERIALS AND DEVICES XIII, 2018, 10532