Local well-posedness for the derivative nonlinear Schrodinger Equation in Besov Spaces

被引:0
|
作者
Cloos, Cai Constantin [1 ]
机构
[1] Univ Bielefeld, Fak Math, Postfach 100131, D-33501 Bielefeld, Germany
关键词
local well-posedness; derivative nonlinear Schrodinger equation; Besov space; multilinear estimates;
D O I
10.14492/hokmj/1550480650
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is shown that the cubic derivative nonlinear Schrodinger equation is locally well-posed in Besov spaces B-2,infinity(s) (X), s >= 1/2, where we treat the non-periodic setting X = R and the periodic setting X = T simultaneously. The proof is based on the strategy of Herr for initial data in H-s (T), s >= 1/2.
引用
收藏
页码:207 / 244
页数:38
相关论文
共 50 条
  • [31] The local well-posedness for nonlinear fourth-order Schrodinger equation with mass-critical nonlinearity and derivative
    Guo, Cuihua
    Sun, Shulin
    Ren, Hongping
    BOUNDARY VALUE PROBLEMS, 2014,
  • [32] Well-posedness for the fourth-order nonlinear derivative Schrodinger equation in higher dimension
    Huo, Zhaohui
    Jia, Yueling
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2011, 96 (02): : 190 - 206
  • [33] ON THE WELL-POSEDNESS AND STABILITY FOR THE FOURTH-ORDER SCHRODINGER EQUATION WITH NONLINEAR DERIVATIVE TERM
    Li, Kelin
    Di, Huafei
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2021, 14 (12): : 4293 - 4320
  • [34] Global well-posedness and scattering for the derivative nonlinear Schrodinger equation with small rough data
    Wang Baoxiang
    Han Lijia
    Huang Chunyan
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2009, 26 (06): : 2253 - 2281
  • [35] Local Well-posedness of the Derivative Schrodinger Equation in Higher Dimension for Any Large Data
    Guo, Boling
    Huo, Zhaohui
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2022, 43 (06) : 977 - 998
  • [36] Well-posedness of the modified Camassa-Holm equation in Besov spaces
    Tang, Hao
    Liu, Zhengrong
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2015, 66 (04): : 1559 - 1580
  • [37] Global well-posedness of the critical Burgers equation in critical Besov spaces
    Miao, Changxing
    Wu, Gang
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 247 (06) : 1673 - 1693
  • [38] Global well-posedness of the aggregation equation with supercritical dissipation in Besov spaces
    Wu, Gang
    Zhang, Qian
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2013, 93 (12): : 882 - 894
  • [39] Global Well-Posedness of the Derivative Nonlinear Schrodinger Equations on T
    Win, Yin Yin Su
    FUNKCIALAJ EKVACIOJ-SERIO INTERNACIA, 2010, 53 (01): : 51 - 88
  • [40] Small data well-posedness for derivative nonlinear Schrodinger equations
    Pornnopparath, Donlapark
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 265 (08) : 3792 - 3840