Local well-posedness for the derivative nonlinear Schrodinger Equation in Besov Spaces

被引:0
|
作者
Cloos, Cai Constantin [1 ]
机构
[1] Univ Bielefeld, Fak Math, Postfach 100131, D-33501 Bielefeld, Germany
关键词
local well-posedness; derivative nonlinear Schrodinger equation; Besov space; multilinear estimates;
D O I
10.14492/hokmj/1550480650
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is shown that the cubic derivative nonlinear Schrodinger equation is locally well-posed in Besov spaces B-2,infinity(s) (X), s >= 1/2, where we treat the non-periodic setting X = R and the periodic setting X = T simultaneously. The proof is based on the strategy of Herr for initial data in H-s (T), s >= 1/2.
引用
收藏
页码:207 / 244
页数:38
相关论文
共 50 条