The local well-posedness for nonlinear fourth-order Schrodinger equation with mass-critical nonlinearity and derivative

被引:1
|
作者
Guo, Cuihua [1 ]
Sun, Shulin [2 ]
Ren, Hongping [3 ]
机构
[1] Shanxi Univ, Sch Math Sci, Taiyuan 030006, Shanxi, Peoples R China
[2] Shanxi Normal Univ, Sch Math & Comp Sci, Linfen 041004, Shanxi, Peoples R China
[3] Taiyuan Univ Sci & Technol, Sch Appl Sci, Taiyuan 030024, Peoples R China
来源
BOUNDARY VALUE PROBLEMS | 2014年
关键词
nonlinear fourth-order Schrodinger equation with derivative; Fourier restriction norm method; Cauchy problem; SOBOLEV SPACES; CAUCHY-PROBLEM; REGULARITY;
D O I
10.1186/1687-2770-2014-90
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the Cauchy problem of the nonlinear fourth-order Schrodinger equation with mass-critical nonlinearity and derivative: iu(t) + au(xxxx) + bu(2) (u) over bar (xx) + c vertical bar u vertical bar(8)u = 0, X is an element of R, t is an element of R, where a, b, and c are real numbers. We obtain the local well-posedness for the Cauchy problem with low regularity initial value data by the Fourier restriction norm method.
引用
收藏
页数:11
相关论文
共 50 条