Local Lagrange interpolation on Powell-Sabin triangulations and terrain modelling

被引:0
|
作者
Nürnberger, G [1 ]
Zeilfelder, F [1 ]
机构
[1] Univ Mannheim, Fak Math & Informat, D-68131 Mannheim, Germany
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Local Lagrange interpolation schemes for quadratic C-1-splines on arbitrary triangulations with Powell-Sabin splits are constructed. By using the concept of weak interpolation, it is proved that the interpolation method yields optimal approximation order. We test our method by interpolating scattered data and show how the method can be applied for terrain modelling. We compare the interpolating splines on fine and coarse triangulations obtained from thinning strategies and analyze the data reduction.
引用
收藏
页码:227 / 244
页数:18
相关论文
共 50 条
  • [41] On the stability of normalized Powell-Sabin B-splines
    Maes, J
    Vanraes, E
    Dierckx, P
    Bultheel, A
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2004, 170 (01) : 181 - 196
  • [42] On calculating normalized Powell-Sabin B-splines
    Dierckx, P
    COMPUTER AIDED GEOMETRIC DESIGN, 1997, 15 (01) : 61 - 78
  • [43] Dyadic and √3-subdivision for uniform Powell-Sabin splines
    Vanraes, E
    Windmolders, J
    Bultheel, A
    Dierckx, P
    SIXTH INTERNATIONAL CONFERENCE ON INFORMATION VISUALISATION, PROCEEDINGS, 2002, : 639 - 643
  • [44] Construction and analysis of cubic Powell-Sabin B-splines
    Groselj, Jan
    Speleers, Hendrik
    COMPUTER AIDED GEOMETRIC DESIGN, 2017, 57 : 1 - 22
  • [45] Powell-Sabin spline based multilevel preconditioners for the biharmonic equation
    Maes, Jan
    Bultheel, Adhemar
    APPLIED NUMERICAL MATHEMATICS, 2010, 60 (05) : 527 - 530
  • [46] Surface compression with hierarchical Powell-Sabin B-splines
    Maes, J
    Bultheel, A
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2006, 4 (01) : 177 - 196
  • [47] Quasi-hierarchical Powell-Sabin B-splines
    Speleers, Hendrik
    Dierckx, Paul
    Vandewalle, Stefan
    COMPUTER AIDED GEOMETRIC DESIGN, 2009, 26 (02) : 174 - 191
  • [48] Smoothing scattered data with a monotone Powell-Sabin spline surface
    Willemans, K
    Dierckx, P
    NUMERICAL ALGORITHMS, 1996, 12 (1-2) : 215 - 232
  • [49] A Parameterized Surface Reconstruction Method Based on Powell-Sabin Subdivision
    Yang Z.
    Shi X.
    Wang W.
    Liu X.
    Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2023, 35 (12): : 1875 - 1886
  • [50] Quadratic spline quasi-interpolants on Powell-Sabin partitions
    Carla Manni
    Paul Sablonnière
    Advances in Computational Mathematics, 2007, 26 : 283 - 304