Local Lagrange interpolation on Powell-Sabin triangulations and terrain modelling

被引:0
|
作者
Nürnberger, G [1 ]
Zeilfelder, F [1 ]
机构
[1] Univ Mannheim, Fak Math & Informat, D-68131 Mannheim, Germany
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Local Lagrange interpolation schemes for quadratic C-1-splines on arbitrary triangulations with Powell-Sabin splits are constructed. By using the concept of weak interpolation, it is proved that the interpolation method yields optimal approximation order. We test our method by interpolating scattered data and show how the method can be applied for terrain modelling. We compare the interpolating splines on fine and coarse triangulations obtained from thinning strategies and analyze the data reduction.
引用
收藏
页码:227 / 244
页数:18
相关论文
共 50 条
  • [21] Preconditioned conjugate gradient method for finding minimal energy surfaces on Powell-Sabin triangulations
    Sajo-Castelli, A. M.
    Fortes, M. A.
    Raydan, M.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 268 : 34 - 55
  • [22] Subdivision of uniform Powell-Sabin splines
    Windmolders, J
    Dierckx, P
    COMPUTER AIDED GEOMETRIC DESIGN, 1999, 16 (04) : 301 - 315
  • [23] Multigrid methods with Powell-Sabin splines
    Speleers, Hendrik
    Dierckx, Paul
    Vandewalle, Stefan
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2008, 28 (04) : 888 - 908
  • [24] On the convexity of Bezier nets of quadratic Powell-Sabin splines on 12-fold refined triangulations
    Lorente-Pardo, J
    Sablonnière, P
    Serrano-Pérez, MC
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2000, 115 (1-2) : 383 - 396
  • [25] Interpolation and scattered data fitting on manifolds using projected Powell-Sabin splines
    Davydov, Oleg
    Schumaker, Larry L.
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2008, 28 (04) : 785 - 805
  • [26] On the convexity of Powell-Sabin finite elements
    Lorente-Pardo, J
    Sablonniere, P
    Serrano-Perez, MC
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 1999, 202 : 395 - 404
  • [27] Exact sequences on Powell-Sabin splits
    Guzman, J.
    Lischke, A.
    Neilan, M.
    CALCOLO, 2020, 57 (02)
  • [28] Uniform Powell-Sabin spline wavelets
    Windmolders, J
    Vanraes, E
    Dierckx, P
    Bultheel, A
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2003, 154 (01) : 125 - 142
  • [29] A geometric characterization of Powell-Sabin triangulations allowing the construction of C2 quartic splines
    Barrera, D.
    Eddargani, S.
    Ibanez, M. J.
    Lamnii, A.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2021, 100 : 30 - 40
  • [30] On C-2 quintic spline functions over triangulations of Powell-Sabin's type
    Lai, MJ
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1996, 73 (1-2) : 135 - 155