The effect of sample resistivity on Kelvin probe force microscopy

被引:8
|
作者
Weymouth, A. J. [1 ]
Giessibl, F. J. [1 ]
机构
[1] Univ Regensburg, Inst Expt & Appl Phys, D-93040 Regensburg, Germany
关键词
20;
D O I
10.1063/1.4766185
中图分类号
O59 [应用物理学];
学科分类号
摘要
Kelvin probe force microscopy (KPFM) is a powerful technique to probe the local electronic structure of materials with atomic force microscopy. One assumption often made is that the applied bias drops fully in the tip-sample junction. We have recently identified an effect, the Phantom force, which can be explained by an ohmic voltage drop near the tip-sample junction causing a reduction of the electrostatic attraction when a tunneling current is present. Here, we demonstrate the strong effect of the Phantom force upon KPFM that can even produce Kelvin parabolae of opposite curvature. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4766185]
引用
收藏
页数:4
相关论文
共 50 条
  • [21] Elemental Identification by Combining Atomic Force Microscopy and Kelvin Probe Force Microscopy
    Schulz, Fabian
    Ritala, Juha
    Krejci, Ondrej
    Seitsonen, Ari Paavo
    Foster, Adam S.
    Liljeroth, Peter
    [J]. ACS NANO, 2018, 12 (06) : 5274 - 5283
  • [22] AFM tip characterization by Kelvin probe force microscopy
    Barth, C.
    Hynninen, T.
    Bieletzki, M.
    Henry, C. R.
    Foster, A. S.
    Esch, F.
    Heiz, U.
    [J]. NEW JOURNAL OF PHYSICS, 2010, 12
  • [23] Signal amplitude and sensitivity of the Kelvin probe force microscopy
    Ouisse, T
    Martins, F
    Stark, M
    Huant, S
    Chevrier, J
    [J]. APPLIED PHYSICS LETTERS, 2006, 88 (04) : 1 - 3
  • [24] The interlayer screening effect of graphene sheets investigated by Kelvin probe force microscopy
    Lee, N. J.
    Yoo, J. W.
    Choi, Y. J.
    Kang, C. J.
    Jeon, D. Y.
    Kim, D. C.
    Seo, S.
    Chung, H. J.
    [J]. APPLIED PHYSICS LETTERS, 2009, 95 (22)
  • [25] The influence of surface topography on Kelvin probe force microscopy
    Sadewasser, S.
    Leendertz, C.
    Streicher, F.
    Lux-Steiner, M. Ch
    [J]. NANOTECHNOLOGY, 2009, 20 (50)
  • [26] Dual-heterodyne Kelvin probe force microscopy
    Grévin, Benjamin
    Husainy, Fatima
    Aldakov, Dmitry
    Aumaître, Cyril
    [J]. Beilstein Journal of Nanotechnology, 2023, 14 : 1068 - 1084
  • [27] Three-Dimensional Kelvin Probe Force Microscopy
    Geng, Junyuan
    Zhang, Hao
    Meng, Xianghe
    Gao, Haibo
    Rong, Weibin
    Xie, Hui
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (28) : 32719 - 32728
  • [28] Kelvin probe force microscopy for perovskite solar cells
    Kang, Zhuo
    Si, Haonan
    Shi, Mingyue
    Xu, Chenzhe
    Fan, Wenqiang
    Ma, Shuangfei
    Kausar, Ammarah
    Liao, Qingliang
    Zhang, Zheng
    Zhang, Yue
    [J]. SCIENCE CHINA-MATERIALS, 2019, 62 (06) : 776 - 789
  • [29] Atomic and Kelvin probe force microscopy of thin films
    Alessandrini, A
    Valdrè, U
    [J]. PROCEEDINGS OF THE 5TH MULTINATIONAL CONGRESS ON ELECTRON MICROSCOPY, 2001, : 553 - 554
  • [30] The effect of patch potentials in Casimir force measurements determined by heterodyne Kelvin probe force microscopy
    Garrett, Joseph L.
    Somers, David
    Munday, Jeremy N.
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2015, 27 (21) : 1 - 8