Dimension reduction for the conditional kth moment in regression

被引:122
|
作者
Yin, XR
Cook, RD
机构
[1] Univ Minnesota, Dept Appl Stat, St Paul, MN 55108 USA
[2] Univ Georgia, Athens, GA 30602 USA
关键词
central subspaces; dimension reduction subspaces; permutation tests; regression graphics; sliced inverse regression;
D O I
10.1111/1467-9868.00330
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The idea of dimension reduction without loss of information can be quite helpful for guiding the construction of summary plots in regression without requiring a prespecified model. Central subspaces are designed to capture all the information for the regression and to provide a population structure for dimension reduction. Here, we introduce the central kth-moment subspace to capture information from the mean, variance and so on up to the kth conditional moment of the regression. New methods are studied for estimating these subspaces. Connections with sliced inverse regression are established, and examples illustrating the theory are presented.
引用
收藏
页码:159 / 175
页数:17
相关论文
共 50 条
  • [41] Dimension reduction in binary response regression
    Cook, RD
    Lee, H
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1999, 94 (448) : 1187 - 1200
  • [42] COMBINING OF DIMENSION REDUCTION REGRESSION METHODS
    Haggag, Magda M. M.
    ADVANCES AND APPLICATIONS IN STATISTICS, 2014, 40 (02) : 133 - 156
  • [43] Sufficient dimension reduction and prediction in regression
    Adragni, Kofi P.
    Cook, R. Dennis
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2009, 367 (1906): : 4385 - 4405
  • [44] Comment on 'Bias reduction in conditional logistic regression'
    Sun, X.
    Sinha, S.
    Wang, S.
    Maiti, T.
    STATISTICS IN MEDICINE, 2011, 30 (12) : 1466 - 1467
  • [45] Efficient estimation of conditional covariance matrices for dimension reduction
    Da Veiga, Sebastien
    Loubes, Jean-Michel
    Solis, Maikol
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2017, 46 (09) : 4403 - 4424
  • [46] Dimension reduction for the conditional mean in regressions with categorical predictors
    Li, B
    Cook, RD
    Chiaromonte, F
    ANNALS OF STATISTICS, 2003, 31 (05): : 1636 - 1668
  • [47] Approximating Conditional Density Functions Using Dimension Reduction
    Fan, Jian-qing
    Peng, Liang
    Yao, Qi-wei
    Zhang, Wen-yang
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2009, 25 (03): : 445 - 456
  • [48] A dimension reduction approach for conditional Kaplan–Meier estimators
    Weiyu Li
    Valentin Patilea
    TEST, 2018, 27 : 295 - 315
  • [50] The ensemble conditional variance estimator for sufficient dimension reduction
    Fertl, Lukas
    Bura, Efstathia
    ELECTRONIC JOURNAL OF STATISTICS, 2022, 16 (01): : 1595 - 1634