Approximating Conditional Density Functions Using Dimension Reduction

被引:0
|
作者
Jian-qing Fan~1
机构
基金
中国国家自然科学基金; 美国国家科学基金会; 英国工程与自然科学研究理事会;
关键词
Conditional density function; dimension reduction; Kullback-Leibler discrepancy; local linear regression; nonparametric regression; Shannon’s entropy;
D O I
暂无
中图分类号
O211.6 [随机过程];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose to approximate the conditional density function of a random variable Y given a dependent random d-vector X by that of Y givenθ~TX,where the unit vectorθis selected such that the average Kullback-Leibler discrepancy distance between the two conditional density functions obtains the minimum.Our approach is nonparametric as far as the estimation of the conditional density functions is concerned.We have shown that this nonparametric estimator is asymptotically adaptive to the unknown indexθin the sense that the first order asymptotic mean squared error of the estimator is the same as that whenθwas known.The proposed method is illustrated using both simulated and real-data examples.
引用
收藏
页码:445 / 456
页数:12
相关论文
共 50 条
  • [1] Approximating Conditional Density Functions Using Dimension Reduction
    Fan, Jian-qing
    Peng, Liang
    Yao, Qi-wei
    Zhang, Wen-yang
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2009, 25 (03): : 445 - 456
  • [2] Approximating conditional density functions using dimension reduction
    Jian-qing Fan
    Liang Peng
    Qi-wei Yao
    Wen-yang Zhang
    Acta Mathematicae Applicatae Sinica, English Series, 2009, 25 : 445 - 456
  • [3] Approximating conditional distribution functions using dimension reduction
    Hall, P
    Yao, QW
    ANNALS OF STATISTICS, 2005, 33 (03): : 1404 - 1421
  • [4] Dimension Reduction and Adaptation in Conditional Density Estimation
    Efromovich, Sam
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2010, 105 (490) : 761 - 774
  • [5] Dimension reduction for the conditional mean and variance functions in time series
    Park, Jin-Hong
    Samadi, S. Yaser
    SCANDINAVIAN JOURNAL OF STATISTICS, 2020, 47 (01) : 134 - 155
  • [6] Dimension reduction based on conditional multiple index density function
    Zhang, Jun
    He, Baohua
    Lu, Tao
    Wen, Songqiao
    BRAZILIAN JOURNAL OF PROBABILITY AND STATISTICS, 2018, 32 (04) : 851 - 872
  • [7] Approximating probability density functions and their convolutions using orthogonal polynomials
    Badinelli, RD
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 1996, 95 (01) : 211 - 230
  • [8] Distance Approximating Dimension Reduction of Riemannian Manifolds
    Chen, Changyou
    Zhang, Junping
    Fleischer, Rudolf
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2010, 40 (01): : 208 - 217
  • [9] Nonlinear dimension reduction for conditional quantiles
    Christou, Eliana
    Settle, Annabel
    Artemiou, Andreas
    ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2021, 15 (04) : 937 - 956
  • [10] Dimension reduction techniques for conditional expectiles
    Christou, Eliana
    STATISTICS, 2023, 57 (04) : 960 - 985