Approximating Conditional Density Functions Using Dimension Reduction

被引:0
|
作者
Jian-qing Fan~1
机构
基金
中国国家自然科学基金; 美国国家科学基金会; 英国工程与自然科学研究理事会;
关键词
Conditional density function; dimension reduction; Kullback-Leibler discrepancy; local linear regression; nonparametric regression; Shannon’s entropy;
D O I
暂无
中图分类号
O211.6 [随机过程];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose to approximate the conditional density function of a random variable Y given a dependent random d-vector X by that of Y givenθ~TX,where the unit vectorθis selected such that the average Kullback-Leibler discrepancy distance between the two conditional density functions obtains the minimum.Our approach is nonparametric as far as the estimation of the conditional density functions is concerned.We have shown that this nonparametric estimator is asymptotically adaptive to the unknown indexθin the sense that the first order asymptotic mean squared error of the estimator is the same as that whenθwas known.The proposed method is illustrated using both simulated and real-data examples.
引用
收藏
页码:445 / 456
页数:12
相关论文
共 50 条
  • [21] Efficient estimation of conditional covariance matrices for dimension reduction
    Da Veiga, Sebastien
    Loubes, Jean-Michel
    Solis, Maikol
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2017, 46 (09) : 4403 - 4424
  • [22] THE ARMA METHOD OF APPROXIMATING PROBABILITY DENSITY-FUNCTIONS
    HART, JD
    GRAY, HL
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1985, 12 (02) : 137 - 152
  • [23] Dimension reduction for the conditional mean in regressions with categorical predictors
    Li, B
    Cook, RD
    Chiaromonte, F
    ANNALS OF STATISTICS, 2003, 31 (05): : 1636 - 1668
  • [24] A dimension reduction approach for conditional Kaplan–Meier estimators
    Weiyu Li
    Valentin Patilea
    TEST, 2018, 27 : 295 - 315
  • [25] Response dimension reduction for the conditional mean in multivariate regression
    Yoo, Jae Keun
    Cook, R. Dennis
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2008, 53 (02) : 334 - 343
  • [26] The ensemble conditional variance estimator for sufficient dimension reduction
    Fertl, Lukas
    Bura, Efstathia
    ELECTRONIC JOURNAL OF STATISTICS, 2022, 16 (01): : 1595 - 1634
  • [27] Conditional mean dimension reduction for tensor time series
    Lee, Chung Eun
    Zhang, Xin
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2024, 199
  • [28] Partial Dynamic Dimension Reduction for Conditional Mean in Regression
    GAN Shengjin
    YU Zhou
    JournalofSystemsScience&Complexity, 2020, 33 (05) : 1585 - 1601
  • [29] Partial Dynamic Dimension Reduction for Conditional Mean in Regression
    Shengjin Gan
    Zhou Yu
    Journal of Systems Science and Complexity, 2020, 33 : 1585 - 1601
  • [30] Partial Dynamic Dimension Reduction for Conditional Mean in Regression
    Gan, Shengjin
    Yu, Zhou
    JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2020, 33 (05) : 1585 - 1601