The idea of dimension reduction without loss of information can be quite helpful for guiding the construction of summary plots in regression without requiring a prespecified model. Central subspaces are designed to capture all the information for the regression and to provide a population structure for dimension reduction. Here, we introduce the central kth-moment subspace to capture information from the mean, variance and so on up to the kth conditional moment of the regression. New methods are studied for estimating these subspaces. Connections with sliced inverse regression are established, and examples illustrating the theory are presented.
机构:
Univ Calif Riverside, Dept Stat, Riverside, CA 92521 USAUniv Calif Riverside, Dept Stat, Riverside, CA 92521 USA
Ma, Shujie
Zhang, Jun
论文数: 0引用数: 0
h-index: 0
机构:
Shenzhen Univ, Inst Stat Sci, Coll Math & Computat Sci, Shen Zhen Hong Kong Joint Res Ctr Appl Stat Sci, Shenzhen 518060, Peoples R ChinaUniv Calif Riverside, Dept Stat, Riverside, CA 92521 USA
Zhang, Jun
Sun, Zihua
论文数: 0引用数: 0
h-index: 0
机构:
Univ Chinese Acad Sci, Dept Math, Beijing, Peoples R ChinaUniv Calif Riverside, Dept Stat, Riverside, CA 92521 USA
Sun, Zihua
Liang, Hua
论文数: 0引用数: 0
h-index: 0
机构:
George Washington Univ, Dept Stat, Washington, DC 20052 USAUniv Calif Riverside, Dept Stat, Riverside, CA 92521 USA
Liang, Hua
ELECTRONIC JOURNAL OF STATISTICS,
2014,
8
: 523
-
542
机构:
Department of Economics, Pennsylvania State University, University Park
Tilburg University, TilburgDepartment of Economics, Pennsylvania State University, University Park
Bierens H.J.
Ginther D.K.
论文数: 0引用数: 0
h-index: 0
机构:
Research Department, Federal Reserve Bank of Atlanta, Atlanta, GA 30303, 104 Marietta Street, NWDepartment of Economics, Pennsylvania State University, University Park
机构:
TU Wien, Fac Math & Geoinformat, Inst Stat & Math Methods Econ, Vienna, AustriaTU Wien, Fac Math & Geoinformat, Inst Stat & Math Methods Econ, Vienna, Austria
Fertl, Lukas
Bura, Efstathia
论文数: 0引用数: 0
h-index: 0
机构:
TU Wien, Fac Math & Geoinformat, Inst Stat & Math Methods Econ, Vienna, AustriaTU Wien, Fac Math & Geoinformat, Inst Stat & Math Methods Econ, Vienna, Austria