New two-derivative implicit-explicit Runge-Kutta methods for stiff reaction-diffusion systems

被引:3
|
作者
Singh, Ankit [1 ]
Maurya, Vikas [1 ]
Rajpoot, Manoj K. [1 ]
机构
[1] Rajiv Gandhi Inst Petr Technol, Dept Math Sci, Math & Comp Lab, Amethi 229304, UP, India
关键词
Two -derivative Runge-Kutta methods; Stability analysis; Turing instability; Allen -Cahn equation; Schnakenberg model; Electrodeposition model; SEMIIMPLICIT NUMERICAL SCHEME; MODEL; APPROXIMATIONS; GROWTH; FLOW;
D O I
10.1016/j.jcp.2022.111610
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Reaction-diffusion systems are extensively used in the mathematical modeling of biological and chemical systems to explain the Turing instability. Generally, reaction-diffusion systems are highly stiff in both reaction and diffusion terms. This paper discusses a new class of two-derivative implicit-explicit (IMEX) Runge-Kutta (RK) type methods for the numerical simulations of stiff reaction-diffusion systems. The present methods do not require numerical inversion of the coefficient matrix -computationally explicit. Stability properties of the developed methods are compared with the similar methods discussed in the literature. Moreover, accuracy and efficiency of the developed methods are validated by numerical simulations of spatiotemporal pattern formations for different reaction-diffusion systems, such as, phase-separation, Schnakenberg model and electrodeposition process.(c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] Diagonally implicit Runge-Kutta methods for stiff problems
    Skvortsov L.M.
    Computational Mathematics and Mathematical Physics, 2006, 46 (12) : 2110 - 2123
  • [42] Exponentially Fitted Two-Derivative Runge-Kutta Methods for Simulation of Oscillatory Genetic Regulatory Systems
    Chen, Zhaoxia
    Li, Juan
    Zhang, Ruqiang
    You, Xiong
    COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, 2015, 2015
  • [43] Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations
    Univ of British Columbia, Vancouver, Canada
    Appl Numer Math, 2-3 (151-167):
  • [44] Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations
    Ascher, UM
    Ruuth, SJ
    Spiteri, RJ
    APPLIED NUMERICAL MATHEMATICS, 1997, 25 (2-3) : 151 - 167
  • [45] Implicit-explicit (IMEX) Runge-Kutta methods for non-hydrostatic atmospheric models
    Gardner, David J.
    Guerra, Jorge E.
    Hamon, Francois P.
    Reynolds, Daniel R.
    Ullrich, Paul A.
    Woodward, Carol S.
    GEOSCIENTIFIC MODEL DEVELOPMENT, 2018, 11 (04) : 1497 - 1515
  • [46] Implicit-explicit Runge-Kutta methods applied to atmospheric chemistry-transport modelling
    Wolke, R
    Knoth, O
    ENVIRONMENTAL MODELLING & SOFTWARE, 2000, 15 (6-7) : 711 - 719
  • [47] Two-derivative Runge-Kutta methods for PDEs using a novel discretization approach
    Tsai, Angela Y. J.
    Chan, Robert P. K.
    Wang, Shixiao
    NUMERICAL ALGORITHMS, 2014, 65 (03) : 687 - 703
  • [48] APPLICATION OF IMPLICIT RUNGE-KUTTA PROCESSES TO STIFF SYSTEMS
    EHLE, BL
    SIAM REVIEW, 1969, 11 (01) : 110 - &
  • [49] Strong Stability Preserving Two-Derivative Two-Step Runge-Kutta Methods
    Qin, Xueyu
    Jiang, Zhenhua
    Yan, Chao
    MATHEMATICS, 2024, 12 (16)
  • [50] Strong Stability Preserving Sixth Order Two-Derivative Runge-Kutta Methods
    Reynoso, Gustavo Franco
    Gottlieb, Sigal
    Grant, Zachary J.
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2016 (ICNAAM-2016), 2017, 1863