New two-derivative implicit-explicit Runge-Kutta methods for stiff reaction-diffusion systems

被引:3
|
作者
Singh, Ankit [1 ]
Maurya, Vikas [1 ]
Rajpoot, Manoj K. [1 ]
机构
[1] Rajiv Gandhi Inst Petr Technol, Dept Math Sci, Math & Comp Lab, Amethi 229304, UP, India
关键词
Two -derivative Runge-Kutta methods; Stability analysis; Turing instability; Allen -Cahn equation; Schnakenberg model; Electrodeposition model; SEMIIMPLICIT NUMERICAL SCHEME; MODEL; APPROXIMATIONS; GROWTH; FLOW;
D O I
10.1016/j.jcp.2022.111610
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Reaction-diffusion systems are extensively used in the mathematical modeling of biological and chemical systems to explain the Turing instability. Generally, reaction-diffusion systems are highly stiff in both reaction and diffusion terms. This paper discusses a new class of two-derivative implicit-explicit (IMEX) Runge-Kutta (RK) type methods for the numerical simulations of stiff reaction-diffusion systems. The present methods do not require numerical inversion of the coefficient matrix -computationally explicit. Stability properties of the developed methods are compared with the similar methods discussed in the literature. Moreover, accuracy and efficiency of the developed methods are validated by numerical simulations of spatiotemporal pattern formations for different reaction-diffusion systems, such as, phase-separation, Schnakenberg model and electrodeposition process.(c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] ENERGY DIMINISHING IMPLICIT-EXPLICIT RUNGE-KUTTA METHODS FOR GRADIENT FLOWS
    Fu, Zhaohui
    Tang, Tao
    Yang, Jiang
    MATHEMATICS OF COMPUTATION, 2024, 93 (350) : 2745 - 2767
  • [22] A Class of Two-Derivative Two-Step Runge-Kutta Methods for Non-Stiff ODEs
    Aiguobasimwin, I. B.
    Okuonghae, R. I.
    JOURNAL OF APPLIED MATHEMATICS, 2019, 2019
  • [23] Two-derivative Runge-Kutta methods with optimal phase properties
    Kalogiratou, Zacharoula
    Monovasihs, Theodore
    Simos, Theodore E.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (03) : 1267 - 1277
  • [24] New optimized implicit-explicit Runge-Kutta methods with applications to the hyperbolic conservation laws
    Maurya, Praveen K.
    Yadav, Vivek S.
    Mahato, Bikash
    Ganta, Naveen
    Rajpoot, Manoj K.
    Bhumkar, Yogesh G.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2021, 446
  • [25] On explicit two-derivative two-step Runge–Kutta methods
    Mukaddes Ökten Turaci
    Turgut Öziş
    Computational and Applied Mathematics, 2018, 37 : 6920 - 6954
  • [26] Implicit-explicit Runge-Kutta schemes and applications to hyperbolic systems with relaxation
    Pareschi, L
    Russo, G
    JOURNAL OF SCIENTIFIC COMPUTING, 2005, 25 (01) : 129 - 155
  • [27] Implicit-explicit runge-kutta schemes and applications to hyperbolic systems with relaxation
    Lorenzo Pareschi
    Giovanni Russo
    Journal of Scientific Computing, 2005, 25 (1-2) : 129 - 155
  • [28] IMPLICIT-EXPLICIT RELAXATION RUNGE-KUTTA METHODS: CONSTRUCTION, ANALYSIS AND APPLICATIONS TO PDES
    Li, Dongfang
    Li, Xiaoxi
    Zhang, Zhimin
    MATHEMATICS OF COMPUTATION, 2023, 92 (339) : 117 - 146
  • [29] Accurate Implicit-Explicit General Linear Methods with Inherent Runge-Kutta Stability
    Bras, Michal
    Izzo, Giuseppe
    Jackiewicz, Zdzislaw
    JOURNAL OF SCIENTIFIC COMPUTING, 2017, 70 (03) : 1105 - 1143
  • [30] Implicit-Explicit Runge-Kutta Methods for Fast-Slow Wave Problems
    Whitaker, Jeffrey S.
    Kar, Sajal K.
    MONTHLY WEATHER REVIEW, 2013, 141 (10) : 3426 - 3434