New two-derivative implicit-explicit Runge-Kutta methods for stiff reaction-diffusion systems

被引:3
|
作者
Singh, Ankit [1 ]
Maurya, Vikas [1 ]
Rajpoot, Manoj K. [1 ]
机构
[1] Rajiv Gandhi Inst Petr Technol, Dept Math Sci, Math & Comp Lab, Amethi 229304, UP, India
关键词
Two -derivative Runge-Kutta methods; Stability analysis; Turing instability; Allen -Cahn equation; Schnakenberg model; Electrodeposition model; SEMIIMPLICIT NUMERICAL SCHEME; MODEL; APPROXIMATIONS; GROWTH; FLOW;
D O I
10.1016/j.jcp.2022.111610
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Reaction-diffusion systems are extensively used in the mathematical modeling of biological and chemical systems to explain the Turing instability. Generally, reaction-diffusion systems are highly stiff in both reaction and diffusion terms. This paper discusses a new class of two-derivative implicit-explicit (IMEX) Runge-Kutta (RK) type methods for the numerical simulations of stiff reaction-diffusion systems. The present methods do not require numerical inversion of the coefficient matrix -computationally explicit. Stability properties of the developed methods are compared with the similar methods discussed in the literature. Moreover, accuracy and efficiency of the developed methods are validated by numerical simulations of spatiotemporal pattern formations for different reaction-diffusion systems, such as, phase-separation, Schnakenberg model and electrodeposition process.(c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] Modified Two-Derivative Runge-Kutta Methods for Solving Oscillatory Problems
    Monovasilis, Th.
    Kalogiratou, Z.
    Simos, T. E.
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING 2017 (ICCMSE-2017), 2017, 1906
  • [32] ASYMPTOTIC PRESERVING IMPLICIT-EXPLICIT RUNGE-KUTTA METHODS FOR NONLINEAR KINETIC EQUATIONS
    Dimarco, Giacomo
    Pareschi, Lorenzo
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2013, 51 (02) : 1064 - 1087
  • [33] New two-derivative runge-kutta methods for the numerical solution of the schrödinger equation
    Zhang, Yanwei
    Su, Weiwei
    Fang, Yonglei
    ICIC Express Letters, Part B: Applications, 2015, 6 (09): : 2553 - 2558
  • [34] EXPONENTIALLY FITTED TWO-DERIVATIVE RUNGE-KUTTA METHODS FOR THE SCHRODINGER EQUATION
    Fang, Yonglei
    You, Xiong
    Ming, Qinghe
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2013, 24 (10):
  • [35] Implicit and Implicit-Explicit Strong Stability Preserving Runge-Kutta Methods with High Linear Order
    Conde, Sidafa
    Gottlieb, Sigal
    Grant, Zachary J.
    Shadid, John N.
    JOURNAL OF SCIENTIFIC COMPUTING, 2017, 73 (2-3) : 667 - 690
  • [36] Sound and soliton wave propagation in homogeneous and heterogeneous mediums with the new two-derivative implicit-explicit Runge-Kutta-Nystrom method
    Rajpoot, Manoj K.
    Yadav, Vivek S.
    Jaglan, Jyoti
    Singh, Ankit
    AIP ADVANCES, 2022, 12 (07)
  • [37] Implicit and Implicit-Explicit Strong Stability Preserving Runge-Kutta Methods With High Linear Order
    Conde, Sidafa
    Gottlieb, Sigal
    Grant, Zachary J.
    Shahid, John N.
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2016 (ICNAAM-2016), 2017, 1863
  • [38] DIAGONALLY IMPLICIT RUNGE-KUTTA METHODS FOR STIFF ODES
    ALEXANDER, R
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1977, 14 (06) : 1006 - 1021
  • [39] ORDER RESULTS FOR IMPLICIT RUNGE-KUTTA METHODS APPLIED TO STIFF SYSTEMS
    FRANK, R
    SCHNEID, J
    UEBERHUBER, CW
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1985, 22 (03) : 515 - 534
  • [40] Diagonally implicit Runge-Kutta methods for stiff ODEs
    Kennedy, Christopher A.
    Carpenter, Mark H.
    APPLIED NUMERICAL MATHEMATICS, 2019, 146 : 221 - 244