New two-derivative implicit-explicit Runge-Kutta methods for stiff reaction-diffusion systems

被引:3
|
作者
Singh, Ankit [1 ]
Maurya, Vikas [1 ]
Rajpoot, Manoj K. [1 ]
机构
[1] Rajiv Gandhi Inst Petr Technol, Dept Math Sci, Math & Comp Lab, Amethi 229304, UP, India
关键词
Two -derivative Runge-Kutta methods; Stability analysis; Turing instability; Allen -Cahn equation; Schnakenberg model; Electrodeposition model; SEMIIMPLICIT NUMERICAL SCHEME; MODEL; APPROXIMATIONS; GROWTH; FLOW;
D O I
10.1016/j.jcp.2022.111610
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Reaction-diffusion systems are extensively used in the mathematical modeling of biological and chemical systems to explain the Turing instability. Generally, reaction-diffusion systems are highly stiff in both reaction and diffusion terms. This paper discusses a new class of two-derivative implicit-explicit (IMEX) Runge-Kutta (RK) type methods for the numerical simulations of stiff reaction-diffusion systems. The present methods do not require numerical inversion of the coefficient matrix -computationally explicit. Stability properties of the developed methods are compared with the similar methods discussed in the literature. Moreover, accuracy and efficiency of the developed methods are validated by numerical simulations of spatiotemporal pattern formations for different reaction-diffusion systems, such as, phase-separation, Schnakenberg model and electrodeposition process.(c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] On explicit two-derivative Runge-Kutta methods
    Chan, Robert P. K.
    Tsai, Angela Y. J.
    NUMERICAL ALGORITHMS, 2010, 53 (2-3) : 171 - 194
  • [2] On explicit two-derivative Runge-Kutta methods
    Robert P. K. Chan
    Angela Y. J. Tsai
    Numerical Algorithms, 2010, 53 : 171 - 194
  • [3] Implicit-explicit Runge-Kutta methods for stiff combustion problems
    Lindblad, E.
    Valiev, D. M.
    Muller, B.
    Rantakokko, J.
    Lotstedt, P.
    Liberman, M. A.
    SHOCK WAVES, VOL 1, PROCEEDINGS, 2009, : 299 - +
  • [4] Accelerated implicit-explicit Runge-Kutta schemes for locally stiff systems
    Vermeire, Brian C.
    Nasab, Siavash Hedayati
    JOURNAL OF COMPUTATIONAL PHYSICS, 2021, 429
  • [5] Extrapolated Implicit-Explicit Runge-Kutta Methods
    Cardone, Angelamaria
    Jackiewicz, Zdzislaw
    Sandu, Adrian
    Zhang, Hong
    MATHEMATICAL MODELLING AND ANALYSIS, 2014, 19 (01) : 18 - 43
  • [6] On explicit two-derivative two-step Runge-Kutta methods
    Turaci, Mukaddes Okten
    Ozis, Turgut
    COMPUTATIONAL & APPLIED MATHEMATICS, 2018, 37 (05): : 6920 - 6954
  • [7] IMPLICIT-EXPLICIT RUNGE-KUTTA SCHEMES FOR HYPERBOLIC SYSTEMS WITH STIFF RELAXATION AND APPLICATIONS
    Boscarino, Sebastiano
    Russo, Giovanni
    HYPERBOLIC PROBLEMS: THEORY, NUMERICS, APPLICATIONS, 2014, 8 : 61 - 80
  • [8] Highly stable implicit-explicit Runge-Kutta methods
    Izzo, Giuseppe
    Jackiewicz, Zdzislaw
    APPLIED NUMERICAL MATHEMATICS, 2017, 113 : 71 - 92
  • [9] Implicit-Explicit Runge-Kutta Schemes for Hyperbolic Systems in the Diffusion Limit
    Boscarino, S.
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2011: INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS A-C, 2011, 1389
  • [10] A CLASS OF IMPLICIT-EXPLICIT TWO-STEP RUNGE-KUTTA METHODS
    Zharovsky, Evgeniy
    Sandu, Adrian
    Zhang, Hong
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2015, 53 (01) : 321 - 341