On the Frobenius conjecture for Markoff numbers

被引:2
|
作者
Chen, Feng-Juan [1 ,2 ,3 ]
Chen, Yong-Gao [1 ,2 ]
机构
[1] Nanjing Normal Univ, Sch Math Sci, Nanjing 210023, Jiangsu, Peoples R China
[2] Nanjing Normal Univ, Inst Math, Nanjing 210023, Jiangsu, Peoples R China
[3] Suzhou Univ, Dept Math, Suzhou 215006, Peoples R China
基金
中国国家自然科学基金;
关键词
Markoff numbers; Markoff triples; Unicity conjecture; Frobenius conjecture;
D O I
10.1016/j.jnt.2012.12.018
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Text. A triple (a, b, c) of positive integers is called a Markoff triple if it satisfies the Diophantine equation a(2) + b(2) + c(2) = 3abc. A famous old conjecture says that any Markoff triple (a, b, c) with a <= b <= c is determined uniquely by its largest member c. Let (a, b, c) be a Markoff triple with a <= b <= c. In 2001, Button proved that if c is of the form kp(l), where k is an integer with 1 <= k <= 10(35) and p(l) is a prime power, then c uniquely determines a and b. In this paper, as a complement to the result of Button, we prove that if either 3c - 2 or 3c + 2 is of the form kp(l), where k is an integer with 1 <= k <= 10(10) and p(l) is a prime power, then c uniquely determines a and b. Video. For a video summary of this paper, please click here or visit http://www.youtube.com/watch?v=6J11b51zdSw. (c) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:2363 / 2373
页数:11
相关论文
共 50 条
  • [21] On a conjecture by Wilf about the Frobenius number
    Alessio Moscariello
    Alessio Sammartano
    Mathematische Zeitschrift, 2015, 280 : 47 - 53
  • [22] Global Frobenius Betti Numbers and Frobenius Euler Characteristics
    De Stefani, Alessandro
    Polstra, Thomas
    Yao, Yongwei
    MICHIGAN MATHEMATICAL JOURNAL, 2022, 71 (03) : 533 - 552
  • [23] On a conjecture concerning the Frobenius norm of matrices
    Zou, Limin
    LINEAR & MULTILINEAR ALGEBRA, 2012, 60 (01): : 27 - 31
  • [24] The toric Frobenius morphism and a conjecture of Orlov
    Ballard, Matthew R.
    Duncan, Alexander
    McFaddin, Patrick K.
    EUROPEAN JOURNAL OF MATHEMATICS, 2019, 5 (03) : 640 - 645
  • [25] Fujita's conjecture and Frobenius amplitude
    Keeler, Dennis S.
    AMERICAN JOURNAL OF MATHEMATICS, 2008, 130 (05) : 1327 - 1336
  • [26] On a conjecture by Wilf about the Frobenius number
    Moscariello, Alessio
    Sammartano, Alessio
    MATHEMATISCHE ZEITSCHRIFT, 2015, 280 (1-2) : 47 - 53
  • [27] Measures of algebraic approximation to Markoff extremal numbers
    Roy, Damien
    Zelo, Dmitrij
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2011, 83 : 407 - 430
  • [28] THE LAW OF LARGE NUMBERS FOR MARKOFF HETEROGENEOUS CHAINS
    ROSENBLATROT, M
    DOKLADY AKADEMII NAUK SSSR, 1960, 134 (02): : 278 - 281
  • [29] Markoff-Lagrange spectrum and extremal numbers
    Roy, Damien
    ACTA MATHEMATICA, 2011, 206 (02) : 325 - 362
  • [30] SOLUTIONS OF A GENERALIZED MARKOFF EQUATION IN FIBONACCI NUMBERS
    Hashim, Hayder Raheem
    Tengely, Szabolcs
    MATHEMATICA SLOVACA, 2020, 70 (05) : 1069 - 1078