On the Frobenius conjecture for Markoff numbers

被引:2
|
作者
Chen, Feng-Juan [1 ,2 ,3 ]
Chen, Yong-Gao [1 ,2 ]
机构
[1] Nanjing Normal Univ, Sch Math Sci, Nanjing 210023, Jiangsu, Peoples R China
[2] Nanjing Normal Univ, Inst Math, Nanjing 210023, Jiangsu, Peoples R China
[3] Suzhou Univ, Dept Math, Suzhou 215006, Peoples R China
基金
中国国家自然科学基金;
关键词
Markoff numbers; Markoff triples; Unicity conjecture; Frobenius conjecture;
D O I
10.1016/j.jnt.2012.12.018
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Text. A triple (a, b, c) of positive integers is called a Markoff triple if it satisfies the Diophantine equation a(2) + b(2) + c(2) = 3abc. A famous old conjecture says that any Markoff triple (a, b, c) with a <= b <= c is determined uniquely by its largest member c. Let (a, b, c) be a Markoff triple with a <= b <= c. In 2001, Button proved that if c is of the form kp(l), where k is an integer with 1 <= k <= 10(35) and p(l) is a prime power, then c uniquely determines a and b. In this paper, as a complement to the result of Button, we prove that if either 3c - 2 or 3c + 2 is of the form kp(l), where k is an integer with 1 <= k <= 10(10) and p(l) is a prime power, then c uniquely determines a and b. Video. For a video summary of this paper, please click here or visit http://www.youtube.com/watch?v=6J11b51zdSw. (c) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:2363 / 2373
页数:11
相关论文
共 50 条
  • [31] Bounds on generalized Frobenius numbers
    Fukshansky, Lenny
    Schuermann, Achill
    EUROPEAN JOURNAL OF COMBINATORICS, 2011, 32 (03) : 361 - 368
  • [32] Faster algorithms for Frobenius numbers
    Beihoffer, D
    Hendry, J
    Nijenhuis, A
    Wagon, S
    ELECTRONIC JOURNAL OF COMBINATORICS, 2005, 12 (01):
  • [33] A note on the Frobenius and the Sylvester numbers
    Tripathi, Amitabha
    NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2018, 24 (02) : 71 - 73
  • [34] Euler-Frobenius numbers
    Gawronski, Wolfgang
    Neuschel, Thorsten
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2013, 24 (10) : 817 - 830
  • [35] Frobenius numbers of Pythagorean triples
    Gil, Byung Keon
    Han, Ji-Woo
    Kim, Tae Hyun
    Koo, Ryun Han
    Lee, Bon Woo
    Lee, Jaehoon
    Nam, Kyeong Sik
    Park, Hyeon Woo
    Park, Poo-Sung
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2015, 11 (02) : 613 - 619
  • [36] The Frobenius Problem for the Proth Numbers
    Srivastava, Pranjal
    Thakkar, Dhara
    ALGORITHMS AND DISCRETE APPLIED MATHEMATICS, CALDAM 2024, 2024, 14508 : 162 - 175
  • [37] On the limit distribution of Frobenius numbers
    Strombergsson, Andreas
    ACTA ARITHMETICA, 2012, 152 (01) : 81 - 107
  • [38] The asymptotic distribution of Frobenius numbers
    Marklof, Jens
    INVENTIONES MATHEMATICAE, 2010, 181 (01) : 179 - 207
  • [39] Eigenvalues of Frobenius and Hodge numbers
    Kisin, Mark
    Lehrer, Gus
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2006, 2 (02) : 497 - 518
  • [40] On the Frobenius numbers of symmetric groups
    Takegahara, Y
    JOURNAL OF ALGEBRA, 1999, 221 (02) : 551 - 561