Analysis of structural distortion in Eshelby twisted InP nanowires by scanning precession electron diffraction

被引:3
|
作者
Ugarte, Daniel [1 ,2 ]
Tizei, Luiz H. G. [3 ]
Cotta, Monica A. [1 ]
Ducati, Caterina [2 ]
Midgley, Paul A. [2 ]
Eggeman, Alexander S. [2 ,4 ]
机构
[1] Univ Estadual Campinas UNICAMP, Inst Fis Gleb Wataghin, BR-13083859 Campinas, SP, Brazil
[2] Univ Cambridge, Dept Mat Sci & Met, Cambridge CB3 0FS, England
[3] Univ Paris Sud, Lab Phys Solides, CNRS UMR8502, F-91405 Orsay, France
[4] Univ Manchester, Sch Mat, Manchester M13 9PL, Lancs, England
基金
巴西圣保罗研究基金会; 英国工程与自然科学研究理事会; 欧洲研究理事会;
关键词
electron microscopy; scanning precession electron diffraction; Eshelby twist; screw dislocation; nanowire; indium phosphide; SEMICONDUCTOR SPECIMENS; RESOLUTION; STRAIN; DRIVEN; GROWTH; TOMOGRAPHY; PRECISION; MECHANISM; ALIGNMENT;
D O I
10.1007/s12274-019-2328-5
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Transmission electron microscopes (TEM) are widely used in nanotechnology research. However, it is still challenging to characterize nanoscale objects; their small size coupled with dynamical diffraction makes interpreting real- or reciprocal-space data difficult. Scanning precession electron diffraction ((S)PED) represents an invaluable contribution, reducing the dynamical contributions to the diffraction pattern at high spatial resolution. Here a detailed analysis of wurtzite InP nanowires (30-40 nm in diameter) containing a screw dislocation and an associated wire lattice torsion is presented. It has been possible to characterize the dislocation with great detail (Burgers and line vector, handedness). Through careful measurement of the strain field and comparison with dynamical electron diffraction simulations, this was found to be compatible with a Burgers vector modulus equal to one hexagonal lattice cell parameter despite the observed crystal rotation rate being larger (ca. 20%) than that predicted by classical elastic theory for the nominal wire diameter. These findings corroborate the importance of the (S)PED technique for characterizing nanoscale materials.
引用
收藏
页码:939 / 946
页数:8
相关论文
共 50 条
  • [21] Rietveld analysis of policrystalline materials using precession of electron diffraction
    Prodan, G.
    Ciupina, V.
    ROMANIAN BIOTECHNOLOGICAL LETTERS, 2010, 15 (03): : 102 - 108
  • [22] Precession diffraction for reliable electron pair distribution function analysis
    Das, Partha Pratim
    Nicolopoulos, Stavros
    Gemmi, Mauro
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2017, 73 : C983 - C983
  • [23] Quasi-parallel precession diffraction: Alignment method for scanning transmission electron microscopes
    Plana-Ruiz, S.
    Portillo, J.
    Estrade, S.
    Peiro, F.
    Kolb, Ute
    Nicolopoulos, S.
    ULTRAMICROSCOPY, 2018, 193 : 39 - 51
  • [24] Structural analysis of InAs quantum dashes grown on InP substrate by scanning transmission electron microscopy
    Sauerwald, A
    Kümmell, T
    Bacher, G
    Somers, A
    Schwertberger, R
    Reithmaier, JP
    Forchel, A
    Physics of Semiconductors, Pts A and B, 2005, 772 : 591 - 592
  • [25] COMPARATIVE ANALYSIS OF ELECTRON DIFFRACTION PATTERN OBTAINED WITHOUT AND WITH PRECESSION SYSTEM
    Manu, R.
    Ciupina, V
    Prodan, G.
    JOURNAL OF OVONIC RESEARCH, 2020, 16 (04): : 189 - 196
  • [26] Characterization by Scanning Precession Electron Diffraction of an Aggregate of Bridgmanite and Ferropericlase Deformed at HP-HT
    Nzogang, B. C.
    Bouquerel, J.
    Cordier, P.
    Mussi, A.
    Girard, J.
    Karato, S.
    GEOCHEMISTRY GEOPHYSICS GEOSYSTEMS, 2018, 19 (03): : 582 - 594
  • [27] A quantitative analysis of the cone-angle dependence in precession electron diffraction
    Ciston, J.
    Deng, B.
    Marks, L. D.
    Own, C. S.
    Sinkler, W.
    ULTRAMICROSCOPY, 2008, 108 (06) : 514 - 522
  • [28] Strain analysis of a Ge micro disk using precession electron diffraction
    Bashir, Aneeqa
    Millar, Ross W.
    Gallacher, Kevin
    Paul, Douglas J.
    Darbal, Amith D.
    Stroud, Robert
    Ballabio, Andrea
    Frigerio, Jacopo
    Isella, Giovanni
    MacLaren, Ian
    JOURNAL OF APPLIED PHYSICS, 2019, 126 (23)
  • [29] Advances in electron channelling contrast imaging and electron backscatter diffraction for imaging and analysis of structural defects in the scanning electron microscope
    Trager-Cowan, C.
    Alasmari, A.
    Avis, W.
    Bruckbauer, J.
    Edwards, P. R.
    Hourahine, B.
    Kraeusel, S.
    Kusch, G.
    Jablon, B. M.
    Johnston, R.
    Martin, R. W.
    Mcdermott, R.
    Naresh-Kumar, G.
    Nouf-Allehiani, M.
    Pascal, E.
    Thomson, D.
    Vespucci, S.
    Mingard, K.
    Parbrook, P. J.
    Smith, M. D.
    Enslin, J.
    Mehnke, F.
    Kneissl, M.
    Kuhn, C.
    Wernicke, T.
    Knauer, A.
    Hagedorn, S.
    Walde, S.
    Weyers, M.
    Coulon, P-M
    Shields, P. A.
    Zhang, Y.
    Jiu, L.
    Gong, Y.
    Smith, R. M.
    Wang, T.
    Winkelmann, A.
    EMAS 2019 WORKSHOP - 16TH EUROPEAN WORKSHOP ON MODERN DEVELOPMENTS AND APPLICATIONS IN MICROBEAM ANALYSIS, 2020, 891
  • [30] Studying phase change memory devices by coupling scanning precession electron diffraction and energy dispersive X-ray analysis
    Henry, Loic
    Bernier, Nicolas
    Jacob, Martin
    Navarro, Gabriele
    Clement, Laurent
    Rouviere, Jean-Luc
    Robin, Eric
    ACTA MATERIALIA, 2020, 201 : 72 - 78