ISLES 2015-A public evaluation benchmark for ischemic stroke lesion segmentation from multispectral MRI

被引:329
|
作者
Maier, Oskar [1 ,2 ]
Menze, Bjoern H. [8 ,9 ]
von der Gablentz, Janina [3 ]
Hani, Levin [6 ]
Heinrich, Mattias P. [1 ]
Liebrand, Matthias [1 ,3 ]
Winzeck, Stefan [8 ,9 ]
Basit, Abdul [17 ]
Bentley, Paul [12 ]
Chen, Liang [11 ,12 ]
Christiaens, Daan [22 ,23 ,24 ]
Dutil, Francis [28 ]
Egger, Karl [14 ]
Feng, Chaolu [15 ]
Glocker, Ben [11 ]
Goetz, Michael [21 ]
Haeck, Tom [22 ,23 ,24 ]
Halme, Hanna-Leena [18 ,19 ,20 ]
Havaei, Mohammad [28 ]
Iftekharuddin, Khan M. [25 ]
Jodoin, Pierre-Marc [28 ]
Kamnitsas, Konstantinos [11 ]
Kellner, Elias [13 ]
Korvenoja, Antti [18 ,19 ]
Larochelle, Hugo [28 ]
Ledig, Christian [11 ]
Lee, Jia-Hong [27 ]
Maes, Frederik [22 ,23 ,24 ]
Mahmood, Qaiser [16 ,17 ]
Maier-Hein, Klaus H. [21 ]
McKinley, Richard [7 ]
Muschelli, John [26 ]
Pal, Chris [29 ]
Pei, Linmin [25 ]
Rangarajan, Janaki Raman [22 ,23 ,24 ]
Reza, Syed M. S. [25 ]
Robben, David [22 ,23 ,24 ]
Rueckert, Daniel [11 ]
Salli, Eero [18 ,19 ]
Suetens, Paul [22 ,23 ,24 ]
Wang, Ching-Wei [27 ]
Wilms, Matthias [1 ]
Kirschke, Jan S. [10 ]
Kraemer, Ulrike M. [3 ,4 ]
Muente, Thomas F. [3 ]
Schramme, Peter [5 ]
Wiest, Roland [7 ]
Handels, Heinz [1 ]
Reyes, Mauricio [6 ]
机构
[1] Univ Lubeck, Inst Med Informat, Lubeck, Germany
[2] Univ Lubeck, Grad Sch Comp Med & Live Sci, Lubeck, Germany
[3] Univ Lubeck, Dept Neurol, Lubeck, Germany
[4] Univ Lubeck, Inst Psychol 2, Lubeck, Germany
[5] Univ Med Ctr Lubeck, Inst Neuroradiol, Lubeck, Germany
[6] Univ Bern, Inst Surg Technol & Biomech, Bern, Switzerland
[7] Inselspital Bern, Dept Diagnost & Intervent Neuroradiol, Bern, Switzerland
[8] Tech Univ Munich, Inst Adv Study, Munich, Germany
[9] Tech Univ Munich, Dept Comp Sci, Munich, Germany
[10] Tech Univ Munich, Klinikum Rechts Isar, Dept Neuroradiol, Munich, Germany
[11] Imperial Coll London, Dept Comp, Biomed Image Anal Grp, London, England
[12] Imperial Coll London, Dept Med, Div Brain Sci, London, England
[13] Univ Med Ctr Freiburg, Med Phys, Dept Radiol, Freiburg, Germany
[14] Univ Med Ctr Freiburg, Dept Neuroradiol, Freiburg, Germany
[15] Northeastern Univ, Coll Informat Sci & Engn, Shenyang, Liaoning, Peoples R China
[16] Chalmers Univ Technol, Signals & Syst, Gothenburg, Sweden
[17] Pakistan Inst Nucl Sci & Technol, Islamabad, Pakistan
[18] Univ Helsinki, Radiol, HUS Med Imaging Ctr, Helsinki, Finland
[19] Helsinki Univ Hosp, Helsinki, Finland
[20] Aalto Univ Sch Sci, Dept Neurosci & Biomed Engn NBE, Aalto, Finland
[21] German Canc Res Ctr, Jr Grp Med Image Comp, Heidelberg, Germany
[22] Katholieke Univ Leuven, Dept Elect Engn, ESAT PSI, Leuven, Belgium
[23] Katholieke Univ Leuven, Med IT Dept, iMinds, Leuven, Belgium
[24] UZ Leuven, Med Imaging Res Ctr, Leuven, Belgium
[25] Old Dominion Univ, Dept Elect & Comp Engn, Vis Lab, Norfolk, VA USA
[26] Johns Hopkins Bloomberg Sch Publ Hlth, Dept Biostat, Baltimore, MD USA
[27] Natl Taiwan Univ Sci & Technol, Grad Inst Biomed Engn, Taipei, Taiwan
[28] Univ Sherbrooke, Sherbrooke, PQ, Canada
[29] Ecole Polytech, Montreal, PQ, Canada
基金
比利时弗兰德研究基金会; 加拿大自然科学与工程研究理事会; 美国国家卫生研究院;
关键词
Ischemic stroke; Segmentation; MRI; Challenge; Benchmark; Comparison; DIFFUSION; BRAIN; ALGORITHMS; REGISTRATION; REPERFUSION; VALIDATION; INFARCTION; PREDICTION; VOLUME; INJURY;
D O I
10.1016/j.media.2016.07.009
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Ischemic stroke is the most common cerebrovascular disease, and its diagnosis, treatment, and study relies on non-invasive imaging. Algorithms for stroke lesion segmentation from magnetic resonance imaging (MRI) volumes are intensely researched, but the reported results are largely incomparable due to different datasets and evaluation schemes. We approached this urgent problem of comparability with the Ischemic Stroke Lesion Segmentation (ISLES) challenge organized in conjunction with the MICCAI 2015 conference. In this paper we propose a common evaluation framework, describe the publicly available datasets, and present the results of the two sub-challenges: Sub-Acute Stroke Lesion Segmentation (SISS) and Stroke Perfusion Estimation (SPES). A total of 16 research groups participated with a wide range of state-of-the-art automatic segmentation algorithms. A thorough analysis of the obtained data enables a critical evaluation of the current state-of-the-art, recommendations for further developments, and the identification of remaining challenges. The segmentation of acute perfusion lesions addressed in SPES was found to be feasible. However, algorithms applied to sub-acute lesion segmentation in SISS still lack accuracy. Overall, no algorithmic characteristic of any method was found to perform superior to the others. Instead, the characteristics of stroke lesion appearances, their evolution, and the observed challenges should be studied in detail. The annotated ISLES image datasets continue to be publicly available through an online evaluation system to serve as an ongoing benchmarking resource (www.isles-challenge.org). (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:250 / 269
页数:20
相关论文
共 35 条
  • [21] Enhanced Ischemic Stroke Lesion Segmentation in MRI Using Attention U-Net with Generalized Dice Focal Loss
    Garcia-Salgado, Beatriz P.
    Almaraz-Damian, Jose A.
    Cervantes-Chavarria, Oscar
    Ponomaryov, Volodymyr
    Reyes-Reyes, Rogelio
    Cruz-Ramos, Clara
    Sadovnychiy, Sergiy
    APPLIED SCIENCES-BASEL, 2024, 14 (18):
  • [22] A deep supervised approach for ischemic lesion segmentation from multimodal MRI using Fully Convolutional Network
    Karthik, R.
    Gupta, Utkarsh
    Jha, Ashish
    Rajalakshmi, R.
    Menaka, R.
    APPLIED SOFT COMPUTING, 2019, 84
  • [23] Segmentation of ischemic stroke lesion from 3d mr images using random forest
    Anjali Gautam
    Balasubramanian Raman
    Multimedia Tools and Applications, 2019, 78 : 6559 - 6579
  • [24] Segmentation of ischemic stroke lesion from 3d mr images using random forest
    Gautam, Anjali
    Raman, Balasubramanian
    MULTIMEDIA TOOLS AND APPLICATIONS, 2019, 78 (06) : 6559 - 6579
  • [25] Ischemic Stroke Lesion Core Segmentation from CT Perfusion Scans Using Attention ResUnet Deep Learning
    Alirr, Omar Ibrahim
    JOURNAL OF IMAGING INFORMATICS IN MEDICINE, 2025,
  • [26] Lesion-preserving unpaired image-to-image translation between MRI and CT from ischemic stroke patients
    Gutierrez, Alejandro
    Tuladhar, Anup
    Rajashekar, Deepthi
    Forkert, Nils D.
    MEDICAL IMAGING 2022: COMPUTER-AIDED DIAGNOSIS, 2022, 12033
  • [27] Lesion-preserving unpaired image-to-image translation between MRI and CT from ischemic stroke patients
    Gutierrez, Alejandro
    Tuladhar, Anup
    Wilms, Matthias
    Rajashekar, Deepthi
    Hill, Michael D. D.
    Demchuk, Andrew
    Goyal, Mayank
    Fiehler, Jens
    Forkert, Nils D. D.
    INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2023, 18 (05) : 827 - 836
  • [28] Lesion-preserving unpaired image-to-image translation between MRI and CT from ischemic stroke patients
    Alejandro Gutierrez
    Anup Tuladhar
    Matthias Wilms
    Deepthi Rajashekar
    Michael D. Hill
    Andrew Demchuk
    Mayank Goyal
    Jens Fiehler
    Nils D. Forkert
    International Journal of Computer Assisted Radiology and Surgery, 2023, 18 : 827 - 836
  • [29] A Hybrid Model for Ischemic Stroke Brain Segmentation from MRI Images using CBAM and ResNet50-UNet
    Aboudi, Fathia
    Drissi, Cyrine
    Kraiem, Tarek
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2024, 15 (02) : 950 - 962
  • [30] Simplified Automated Segmentation of Acute Ischemic Stroke Lesions from Multimodal MRI: A knowledge-based learning approach
    Nazari-Farsani, S.
    Nyman, M.
    Karjalainen, T.
    Bucci, M.
    Isojarvi, J.
    Nummenmaa, L.
    2019 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE (NSS/MIC), 2019,