ISLES 2015-A public evaluation benchmark for ischemic stroke lesion segmentation from multispectral MRI

被引:329
|
作者
Maier, Oskar [1 ,2 ]
Menze, Bjoern H. [8 ,9 ]
von der Gablentz, Janina [3 ]
Hani, Levin [6 ]
Heinrich, Mattias P. [1 ]
Liebrand, Matthias [1 ,3 ]
Winzeck, Stefan [8 ,9 ]
Basit, Abdul [17 ]
Bentley, Paul [12 ]
Chen, Liang [11 ,12 ]
Christiaens, Daan [22 ,23 ,24 ]
Dutil, Francis [28 ]
Egger, Karl [14 ]
Feng, Chaolu [15 ]
Glocker, Ben [11 ]
Goetz, Michael [21 ]
Haeck, Tom [22 ,23 ,24 ]
Halme, Hanna-Leena [18 ,19 ,20 ]
Havaei, Mohammad [28 ]
Iftekharuddin, Khan M. [25 ]
Jodoin, Pierre-Marc [28 ]
Kamnitsas, Konstantinos [11 ]
Kellner, Elias [13 ]
Korvenoja, Antti [18 ,19 ]
Larochelle, Hugo [28 ]
Ledig, Christian [11 ]
Lee, Jia-Hong [27 ]
Maes, Frederik [22 ,23 ,24 ]
Mahmood, Qaiser [16 ,17 ]
Maier-Hein, Klaus H. [21 ]
McKinley, Richard [7 ]
Muschelli, John [26 ]
Pal, Chris [29 ]
Pei, Linmin [25 ]
Rangarajan, Janaki Raman [22 ,23 ,24 ]
Reza, Syed M. S. [25 ]
Robben, David [22 ,23 ,24 ]
Rueckert, Daniel [11 ]
Salli, Eero [18 ,19 ]
Suetens, Paul [22 ,23 ,24 ]
Wang, Ching-Wei [27 ]
Wilms, Matthias [1 ]
Kirschke, Jan S. [10 ]
Kraemer, Ulrike M. [3 ,4 ]
Muente, Thomas F. [3 ]
Schramme, Peter [5 ]
Wiest, Roland [7 ]
Handels, Heinz [1 ]
Reyes, Mauricio [6 ]
机构
[1] Univ Lubeck, Inst Med Informat, Lubeck, Germany
[2] Univ Lubeck, Grad Sch Comp Med & Live Sci, Lubeck, Germany
[3] Univ Lubeck, Dept Neurol, Lubeck, Germany
[4] Univ Lubeck, Inst Psychol 2, Lubeck, Germany
[5] Univ Med Ctr Lubeck, Inst Neuroradiol, Lubeck, Germany
[6] Univ Bern, Inst Surg Technol & Biomech, Bern, Switzerland
[7] Inselspital Bern, Dept Diagnost & Intervent Neuroradiol, Bern, Switzerland
[8] Tech Univ Munich, Inst Adv Study, Munich, Germany
[9] Tech Univ Munich, Dept Comp Sci, Munich, Germany
[10] Tech Univ Munich, Klinikum Rechts Isar, Dept Neuroradiol, Munich, Germany
[11] Imperial Coll London, Dept Comp, Biomed Image Anal Grp, London, England
[12] Imperial Coll London, Dept Med, Div Brain Sci, London, England
[13] Univ Med Ctr Freiburg, Med Phys, Dept Radiol, Freiburg, Germany
[14] Univ Med Ctr Freiburg, Dept Neuroradiol, Freiburg, Germany
[15] Northeastern Univ, Coll Informat Sci & Engn, Shenyang, Liaoning, Peoples R China
[16] Chalmers Univ Technol, Signals & Syst, Gothenburg, Sweden
[17] Pakistan Inst Nucl Sci & Technol, Islamabad, Pakistan
[18] Univ Helsinki, Radiol, HUS Med Imaging Ctr, Helsinki, Finland
[19] Helsinki Univ Hosp, Helsinki, Finland
[20] Aalto Univ Sch Sci, Dept Neurosci & Biomed Engn NBE, Aalto, Finland
[21] German Canc Res Ctr, Jr Grp Med Image Comp, Heidelberg, Germany
[22] Katholieke Univ Leuven, Dept Elect Engn, ESAT PSI, Leuven, Belgium
[23] Katholieke Univ Leuven, Med IT Dept, iMinds, Leuven, Belgium
[24] UZ Leuven, Med Imaging Res Ctr, Leuven, Belgium
[25] Old Dominion Univ, Dept Elect & Comp Engn, Vis Lab, Norfolk, VA USA
[26] Johns Hopkins Bloomberg Sch Publ Hlth, Dept Biostat, Baltimore, MD USA
[27] Natl Taiwan Univ Sci & Technol, Grad Inst Biomed Engn, Taipei, Taiwan
[28] Univ Sherbrooke, Sherbrooke, PQ, Canada
[29] Ecole Polytech, Montreal, PQ, Canada
基金
比利时弗兰德研究基金会; 加拿大自然科学与工程研究理事会; 美国国家卫生研究院;
关键词
Ischemic stroke; Segmentation; MRI; Challenge; Benchmark; Comparison; DIFFUSION; BRAIN; ALGORITHMS; REGISTRATION; REPERFUSION; VALIDATION; INFARCTION; PREDICTION; VOLUME; INJURY;
D O I
10.1016/j.media.2016.07.009
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Ischemic stroke is the most common cerebrovascular disease, and its diagnosis, treatment, and study relies on non-invasive imaging. Algorithms for stroke lesion segmentation from magnetic resonance imaging (MRI) volumes are intensely researched, but the reported results are largely incomparable due to different datasets and evaluation schemes. We approached this urgent problem of comparability with the Ischemic Stroke Lesion Segmentation (ISLES) challenge organized in conjunction with the MICCAI 2015 conference. In this paper we propose a common evaluation framework, describe the publicly available datasets, and present the results of the two sub-challenges: Sub-Acute Stroke Lesion Segmentation (SISS) and Stroke Perfusion Estimation (SPES). A total of 16 research groups participated with a wide range of state-of-the-art automatic segmentation algorithms. A thorough analysis of the obtained data enables a critical evaluation of the current state-of-the-art, recommendations for further developments, and the identification of remaining challenges. The segmentation of acute perfusion lesions addressed in SPES was found to be feasible. However, algorithms applied to sub-acute lesion segmentation in SISS still lack accuracy. Overall, no algorithmic characteristic of any method was found to perform superior to the others. Instead, the characteristics of stroke lesion appearances, their evolution, and the observed challenges should be studied in detail. The annotated ISLES image datasets continue to be publicly available through an online evaluation system to serve as an ongoing benchmarking resource (www.isles-challenge.org). (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:250 / 269
页数:20
相关论文
共 35 条
  • [31] Hybrid offline and self-knowledge distillation for acute ischemic stroke lesion segmentation from non-contrast CT scans
    Wang, Ziying
    Zhu, Hongqing
    Liu, Jiahao
    Chen, Ning
    Huang, Bingcang
    Lu, Weiping
    Wang, Ying
    Computers in Biology and Medicine, 2024, 183
  • [32] Consistent depiction of the acidic ischemic lesion with APT MRI-Dual RF power evaluation of pH-sensitive image in acute stroke
    Sun, Phillip Zhe
    MAGNETIC RESONANCE IN MEDICINE, 2022, 87 (02) : 850 - 858
  • [33] Automatic ischemic stroke lesion segmentation from computed tomography perfusion images by image synthesis and attention-based deep neural networks
    Wang, Guotai
    Song, Tao
    Dong, Qiang
    Cui, Mei
    Huang, Ning
    Zhang, Shaoting
    MEDICAL IMAGE ANALYSIS, 2020, 65
  • [34] DCTP-Net: Dual-Branch CLIP-Enhance Textual Prompt-Aware Network for Acute Ischemic Stroke Lesion Segmentation From CT Image
    Liu, Jiahao
    Zhu, Hongqing
    Wang, Ziying
    Chen, Ning
    Hou, Tong
    Huang, Bingcang
    Lu, Weiping
    Wang, Ying
    Yang, Suyi
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2025, 29 (01) : 507 - 520
  • [35] Evaluation of ischemic stroke hybrid segmentation in a rat model of temporary middle cerebral artery occlusion using ground truth from histologic and MR data
    Imielinska, C
    Jin, YP
    Liu, X
    Rosiene, J
    Zacharia, BE
    Komotar, RJ
    Mocco, J
    Sughrue, ME
    Grobelny, B
    Sisti, A
    Silverberg, J
    Khandji, J
    Cohen, H
    Connolly, S
    D'Ambrosio, AL
    MEDICAL IMAGING 2005: IMAGE PROCESSING, PT 1-3, 2005, 5747 : 1732 - 1741