ISLES 2015-A public evaluation benchmark for ischemic stroke lesion segmentation from multispectral MRI

被引:329
|
作者
Maier, Oskar [1 ,2 ]
Menze, Bjoern H. [8 ,9 ]
von der Gablentz, Janina [3 ]
Hani, Levin [6 ]
Heinrich, Mattias P. [1 ]
Liebrand, Matthias [1 ,3 ]
Winzeck, Stefan [8 ,9 ]
Basit, Abdul [17 ]
Bentley, Paul [12 ]
Chen, Liang [11 ,12 ]
Christiaens, Daan [22 ,23 ,24 ]
Dutil, Francis [28 ]
Egger, Karl [14 ]
Feng, Chaolu [15 ]
Glocker, Ben [11 ]
Goetz, Michael [21 ]
Haeck, Tom [22 ,23 ,24 ]
Halme, Hanna-Leena [18 ,19 ,20 ]
Havaei, Mohammad [28 ]
Iftekharuddin, Khan M. [25 ]
Jodoin, Pierre-Marc [28 ]
Kamnitsas, Konstantinos [11 ]
Kellner, Elias [13 ]
Korvenoja, Antti [18 ,19 ]
Larochelle, Hugo [28 ]
Ledig, Christian [11 ]
Lee, Jia-Hong [27 ]
Maes, Frederik [22 ,23 ,24 ]
Mahmood, Qaiser [16 ,17 ]
Maier-Hein, Klaus H. [21 ]
McKinley, Richard [7 ]
Muschelli, John [26 ]
Pal, Chris [29 ]
Pei, Linmin [25 ]
Rangarajan, Janaki Raman [22 ,23 ,24 ]
Reza, Syed M. S. [25 ]
Robben, David [22 ,23 ,24 ]
Rueckert, Daniel [11 ]
Salli, Eero [18 ,19 ]
Suetens, Paul [22 ,23 ,24 ]
Wang, Ching-Wei [27 ]
Wilms, Matthias [1 ]
Kirschke, Jan S. [10 ]
Kraemer, Ulrike M. [3 ,4 ]
Muente, Thomas F. [3 ]
Schramme, Peter [5 ]
Wiest, Roland [7 ]
Handels, Heinz [1 ]
Reyes, Mauricio [6 ]
机构
[1] Univ Lubeck, Inst Med Informat, Lubeck, Germany
[2] Univ Lubeck, Grad Sch Comp Med & Live Sci, Lubeck, Germany
[3] Univ Lubeck, Dept Neurol, Lubeck, Germany
[4] Univ Lubeck, Inst Psychol 2, Lubeck, Germany
[5] Univ Med Ctr Lubeck, Inst Neuroradiol, Lubeck, Germany
[6] Univ Bern, Inst Surg Technol & Biomech, Bern, Switzerland
[7] Inselspital Bern, Dept Diagnost & Intervent Neuroradiol, Bern, Switzerland
[8] Tech Univ Munich, Inst Adv Study, Munich, Germany
[9] Tech Univ Munich, Dept Comp Sci, Munich, Germany
[10] Tech Univ Munich, Klinikum Rechts Isar, Dept Neuroradiol, Munich, Germany
[11] Imperial Coll London, Dept Comp, Biomed Image Anal Grp, London, England
[12] Imperial Coll London, Dept Med, Div Brain Sci, London, England
[13] Univ Med Ctr Freiburg, Med Phys, Dept Radiol, Freiburg, Germany
[14] Univ Med Ctr Freiburg, Dept Neuroradiol, Freiburg, Germany
[15] Northeastern Univ, Coll Informat Sci & Engn, Shenyang, Liaoning, Peoples R China
[16] Chalmers Univ Technol, Signals & Syst, Gothenburg, Sweden
[17] Pakistan Inst Nucl Sci & Technol, Islamabad, Pakistan
[18] Univ Helsinki, Radiol, HUS Med Imaging Ctr, Helsinki, Finland
[19] Helsinki Univ Hosp, Helsinki, Finland
[20] Aalto Univ Sch Sci, Dept Neurosci & Biomed Engn NBE, Aalto, Finland
[21] German Canc Res Ctr, Jr Grp Med Image Comp, Heidelberg, Germany
[22] Katholieke Univ Leuven, Dept Elect Engn, ESAT PSI, Leuven, Belgium
[23] Katholieke Univ Leuven, Med IT Dept, iMinds, Leuven, Belgium
[24] UZ Leuven, Med Imaging Res Ctr, Leuven, Belgium
[25] Old Dominion Univ, Dept Elect & Comp Engn, Vis Lab, Norfolk, VA USA
[26] Johns Hopkins Bloomberg Sch Publ Hlth, Dept Biostat, Baltimore, MD USA
[27] Natl Taiwan Univ Sci & Technol, Grad Inst Biomed Engn, Taipei, Taiwan
[28] Univ Sherbrooke, Sherbrooke, PQ, Canada
[29] Ecole Polytech, Montreal, PQ, Canada
基金
比利时弗兰德研究基金会; 加拿大自然科学与工程研究理事会; 美国国家卫生研究院;
关键词
Ischemic stroke; Segmentation; MRI; Challenge; Benchmark; Comparison; DIFFUSION; BRAIN; ALGORITHMS; REGISTRATION; REPERFUSION; VALIDATION; INFARCTION; PREDICTION; VOLUME; INJURY;
D O I
10.1016/j.media.2016.07.009
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Ischemic stroke is the most common cerebrovascular disease, and its diagnosis, treatment, and study relies on non-invasive imaging. Algorithms for stroke lesion segmentation from magnetic resonance imaging (MRI) volumes are intensely researched, but the reported results are largely incomparable due to different datasets and evaluation schemes. We approached this urgent problem of comparability with the Ischemic Stroke Lesion Segmentation (ISLES) challenge organized in conjunction with the MICCAI 2015 conference. In this paper we propose a common evaluation framework, describe the publicly available datasets, and present the results of the two sub-challenges: Sub-Acute Stroke Lesion Segmentation (SISS) and Stroke Perfusion Estimation (SPES). A total of 16 research groups participated with a wide range of state-of-the-art automatic segmentation algorithms. A thorough analysis of the obtained data enables a critical evaluation of the current state-of-the-art, recommendations for further developments, and the identification of remaining challenges. The segmentation of acute perfusion lesions addressed in SPES was found to be feasible. However, algorithms applied to sub-acute lesion segmentation in SISS still lack accuracy. Overall, no algorithmic characteristic of any method was found to perform superior to the others. Instead, the characteristics of stroke lesion appearances, their evolution, and the observed challenges should be studied in detail. The annotated ISLES image datasets continue to be publicly available through an online evaluation system to serve as an ongoing benchmarking resource (www.isles-challenge.org). (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:250 / 269
页数:20
相关论文
共 35 条
  • [1] ISLES 2016 and 2017-Benchmarking Ischemic Stroke Lesion Outcome Prediction Based on Multispectral MRI
    Winzeck, Stefan
    Hakim, Arsany
    McKinley, Richard
    Pinto, Jose A. A. D. S. R.
    Alves, Victor
    Silva, Carlos
    Pisov, Maxim
    Krivov, Egor
    Belyaev, Mikhail
    Monteiro, Miguel
    Oliveira, Arlindo
    Choi, Youngwon
    Palk, Myunghee Cho
    Kwon, Yongchan
    Lee, Hanbyul
    Kim, Beom Joon
    Won, Joong-Ho
    Islam, Mobarakol
    Ren, Hongliang
    Robben, David
    Suetens, Paul
    Gong, Enhao
    Niu, Yilin
    Xu, Junshen
    Pauly, John M.
    Lucas, Christian
    Heinrich, Mattias P.
    Rivera', Luis C.
    Castillo, Laura S.
    Daza, Laura A.
    Beers, Andrew L.
    Arbelaers, Pablo
    Maier, Oskar
    Chang, Ken
    Brown, James M.
    Kapalthy-Cramer, Jayashree
    Zaharchuk, Greg
    Wiest, Roland
    Reyes, Mauricio
    FRONTIERS IN NEUROLOGY, 2018, 9
  • [2] A Review of MRI Acute Ischemic Stroke Lesion Segmentation
    Isa, Abang Mohd Arif Anaqi Abang
    Kipli, Kuryati
    Mahmood, Muhammad Hamdi
    Jobli, Ahmad Tirmizi Bin
    Sahari, Siti Kudnie
    Muhammad, Mohd Saufee
    Chong, Soon K.
    AL-Kharabsheh, Buthainah Nawaf Issa
    INTERNATIONAL JOURNAL OF INTEGRATED ENGINEERING, 2020, 12 (06): : 116 - 127
  • [3] Symmetry determined superpixels for efficient lesion segmentation of ischemic stroke from MRI
    Vupputuri, Anusha
    Dighade, Susheelkumar
    Prasanth, P. S.
    Ghosh, Nirmalya
    2018 40TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2018, : 742 - 745
  • [4] Local Gamma Augmentation for Ischemic Stroke Lesion Segmentation on MRI
    Middleton, Jon
    Bauer, Marko
    Johansen, Jacob
    Perslev, Mathias
    Sheng, Kaining
    Ingala, Silvia
    Nielsen, Mads
    Pai, Akshay
    NORTHERN LIGHTS DEEP LEARNING CONFERENCE, VOL 233, 2024, 233 : 158 - 164
  • [5] U-ISLES: Ischemic Stroke Lesion Segmentation Using U-Net
    Cornelio, Lea Katrina S.
    del Castillo, Mary Abigail, V
    Naval, Prospero C., Jr.
    INTELLIGENT SYSTEMS AND APPLICATIONS, INTELLISYS, VOL 2, 2019, 869 : 326 - 336
  • [6] Lesion segmentation from multimodal MRI using random forest following ischemic stroke
    Mitra, Jhimli
    Bourgeat, Pierrick
    Fripp, Jurgen
    Ghose, Soumya
    Rose, Stephen
    Salvado, Olivier
    Connelly, Alan
    Campbell, Bruce
    Palmer, Susan
    Sharma, Gagan
    Christensen, Soren
    Carey, Leeanne
    NEUROIMAGE, 2014, 98 : 324 - 335
  • [7] Sub-acute and Chronic Ischemic Stroke Lesion MRI Segmentation
    Doyle, Senan
    Forbes, Florence
    Jaillard, Assia
    Heck, Olivier
    Detante, Olivier
    Dojat, Michel
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2017, 2018, 10670 : 111 - 122
  • [8] Deep Learning for Automated Ischemic Stroke Lesion Segmentation from Multi-spectral MRI
    Dogru, Dilan
    Ozdemir, Mehmet Akif
    Guren, Onan
    32ND EUROPEAN SIGNAL PROCESSING CONFERENCE, EUSIPCO 2024, 2024, : 1392 - 1396
  • [9] Semantic segmentation guided detector for segmentation, classification, and lesion mapping of acute ischemic stroke in MRI images
    Wei, Yi-Chia
    Huang, Wen-Yi
    Jian, Chih-Yu
    Hsu, Chih-Chin Heather
    Hsu, Chih-Chung
    Lin, Ching-Po
    Cheng, Chi-Tung
    Chen, Yao-Liang
    Wei, Hung-Yu
    Chen, Kuan-Fu
    NEUROIMAGE-CLINICAL, 2022, 35
  • [10] Ischemic Stroke Lesion Segmentation by Analyzing MRI Images Using Deep Convolutional Neural Networks
    Joshi, Shubham
    Gore, Sonal
    HELIX, 2018, 8 (05): : 3721 - 3725