Symmetry determined superpixels for efficient lesion segmentation of ischemic stroke from MRI

被引:0
|
作者
Vupputuri, Anusha [1 ]
Dighade, Susheelkumar [1 ]
Prasanth, P. S. [1 ]
Ghosh, Nirmalya [1 ]
机构
[1] Indian Inst Technol Kharagpur, Dept Elect Engn, Kharagpur 721302, W Bengal, India
关键词
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Non-invasive, quantitative and robust identification of ischemic stroke and estimation of injury extent is essential for assisting neuroradiologists. Manual lesion delineation techniques are susceptible to subjective errors and therefore computer aided preliminary screening of necrosis is warranted. Superpixel based segmentation has gained importance in the recent past by reducing the computational complexity and preserving the characteristics of a group of pixels with similar properties. Axial and coronal MR images of brain exhibit the important feature of symmetry which was integrated with superpixels for segmenting ischemic lesion. This method was evaluated on a challenging 10 patient data set along with MICCAI challenge data of 28 patients yielding promising results. Proposed symmetry determined superpixel based method demonstrated accuracy close to manual lesion demarcation with high performance indices with average sensitivity of 82.32%, specificity of 93.7% and Dice similarity score of 81.14%.
引用
收藏
页码:742 / 745
页数:4
相关论文
共 50 条
  • [1] A Review of MRI Acute Ischemic Stroke Lesion Segmentation
    Isa, Abang Mohd Arif Anaqi Abang
    Kipli, Kuryati
    Mahmood, Muhammad Hamdi
    Jobli, Ahmad Tirmizi Bin
    Sahari, Siti Kudnie
    Muhammad, Mohd Saufee
    Chong, Soon K.
    AL-Kharabsheh, Buthainah Nawaf Issa
    INTERNATIONAL JOURNAL OF INTEGRATED ENGINEERING, 2020, 12 (06): : 116 - 127
  • [2] Ischemic stroke segmentation in multi-sequence MRI by symmetry determined superpixel based hierarchical clustering
    Vupputuri, Anusha
    Ashwal, Stephen
    Tsao, Bryan
    Ghosh, Nirmalya
    COMPUTERS IN BIOLOGY AND MEDICINE, 2020, 116
  • [3] Local Gamma Augmentation for Ischemic Stroke Lesion Segmentation on MRI
    Middleton, Jon
    Bauer, Marko
    Johansen, Jacob
    Perslev, Mathias
    Sheng, Kaining
    Ingala, Silvia
    Nielsen, Mads
    Pai, Akshay
    NORTHERN LIGHTS DEEP LEARNING CONFERENCE, VOL 233, 2024, 233 : 158 - 164
  • [4] Lesion segmentation from multimodal MRI using random forest following ischemic stroke
    Mitra, Jhimli
    Bourgeat, Pierrick
    Fripp, Jurgen
    Ghose, Soumya
    Rose, Stephen
    Salvado, Olivier
    Connelly, Alan
    Campbell, Bruce
    Palmer, Susan
    Sharma, Gagan
    Christensen, Soren
    Carey, Leeanne
    NEUROIMAGE, 2014, 98 : 324 - 335
  • [5] Sub-acute and Chronic Ischemic Stroke Lesion MRI Segmentation
    Doyle, Senan
    Forbes, Florence
    Jaillard, Assia
    Heck, Olivier
    Detante, Olivier
    Dojat, Michel
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2017, 2018, 10670 : 111 - 122
  • [6] Deep Learning for Automated Ischemic Stroke Lesion Segmentation from Multi-spectral MRI
    Dogru, Dilan
    Ozdemir, Mehmet Akif
    Guren, Onan
    32ND EUROPEAN SIGNAL PROCESSING CONFERENCE, EUSIPCO 2024, 2024, : 1392 - 1396
  • [7] ISLES 2015-A public evaluation benchmark for ischemic stroke lesion segmentation from multispectral MRI
    Maier, Oskar
    Menze, Bjoern H.
    von der Gablentz, Janina
    Hani, Levin
    Heinrich, Mattias P.
    Liebrand, Matthias
    Winzeck, Stefan
    Basit, Abdul
    Bentley, Paul
    Chen, Liang
    Christiaens, Daan
    Dutil, Francis
    Egger, Karl
    Feng, Chaolu
    Glocker, Ben
    Goetz, Michael
    Haeck, Tom
    Halme, Hanna-Leena
    Havaei, Mohammad
    Iftekharuddin, Khan M.
    Jodoin, Pierre-Marc
    Kamnitsas, Konstantinos
    Kellner, Elias
    Korvenoja, Antti
    Larochelle, Hugo
    Ledig, Christian
    Lee, Jia-Hong
    Maes, Frederik
    Mahmood, Qaiser
    Maier-Hein, Klaus H.
    McKinley, Richard
    Muschelli, John
    Pal, Chris
    Pei, Linmin
    Rangarajan, Janaki Raman
    Reza, Syed M. S.
    Robben, David
    Rueckert, Daniel
    Salli, Eero
    Suetens, Paul
    Wang, Ching-Wei
    Wilms, Matthias
    Kirschke, Jan S.
    Kraemer, Ulrike M.
    Muente, Thomas F.
    Schramme, Peter
    Wiest, Roland
    Handels, Heinz
    Reyes, Mauricio
    MEDICAL IMAGE ANALYSIS, 2017, 35 : 250 - 269
  • [8] A DEEP SYMMETRY CONVNET FOR STROKE LESION SEGMENTATION
    Wang, Yanran
    Katsaggelos, Aggelos K.
    Wang, Xue
    Parrish, Todd B.
    2016 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2016, : 111 - 115
  • [9] Semantic segmentation guided detector for segmentation, classification, and lesion mapping of acute ischemic stroke in MRI images
    Wei, Yi-Chia
    Huang, Wen-Yi
    Jian, Chih-Yu
    Hsu, Chih-Chin Heather
    Hsu, Chih-Chung
    Lin, Ching-Po
    Cheng, Chi-Tung
    Chen, Yao-Liang
    Wei, Hung-Yu
    Chen, Kuan-Fu
    NEUROIMAGE-CLINICAL, 2022, 35
  • [10] Automated ischemic stroke lesion MRI quantification
    Doyle, S.
    Forbes, F.
    Jaillard, A.
    Heck, O.
    Detante, O.
    Dojat, M.
    CEREBROVASCULAR DISEASES, 2018, 45 : 409 - 410