BEHAVIOR PATTERNS IN MULTIPARAMETRIC DYNAMICAL SYSTEMS: LORENZ MODEL

被引:11
|
作者
Barrio, Roberto [1 ,2 ]
Blesa, Fernando [3 ]
Serrano, Sergio [1 ,2 ]
机构
[1] Univ Zaragoza, IUMA, E-50009 Zaragoza, Spain
[2] Univ Zaragoza, GME, Dept Matemat Aplicada, E-50009 Zaragoza, Spain
[3] Univ Zaragoza, GME, Dept Fis Aplicada, E-50009 Zaragoza, Spain
来源
关键词
Lorenz equations; chaos; sensitivity analysis; chaos indicators; STRANGE ATTRACTORS; BOUNDS; CHAOS; FLOW;
D O I
10.1142/S0218127412300194
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In experimental and theoretical studies of Dynamical Systems, there are usually several parameters that govern the models. Thus, a detailed study of the global parametric phase space is not easy and normally unachievable. In this paper, we show that a careful selection of one straight line (or other 1D manifold) permits us to obtain a global idea of the evolution of the system in some circumstances. We illustrate this fact with the paradigmatic example of the Lorenz model, based on a global study, changing all three parameters. Besides, searching in other regions, for all the detected behavior patterns in one straight line, we have been able to see that missing topological structures of the chaotic attractors may be found on the chaotic-saddles.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Dynamical Behavior of a Generalized Lorenz System Model and its Simulation
    Zhang, Fuchen
    Liao, Xiaofeng
    Zhang, Guangyun
    COMPLEXITY, 2016, 21 (S1) : 99 - 105
  • [2] Dynamical Analysis of the Generalized Lorenz Systems
    Fuchen Zhang
    Xiaofeng Liao
    Guangyun Zhang
    Chunlai Mu
    Journal of Dynamical and Control Systems, 2017, 23 : 349 - 362
  • [3] Dynamical Analysis of the Generalized Lorenz Systems
    Zhang, Fuchen
    Liao, Xiaofeng
    Zhang, Guangyun
    Mu, Chunlai
    JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2017, 23 (02) : 349 - 362
  • [4] DYNAMICAL BEHAVIOR OF THE GENERALIZED COMPLEX LORENZ CHAOTIC SYSTEM
    Zhang, Fuchen
    Xu, Fei
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2024, 14 (04): : 1915 - 1931
  • [5] Complex dynamical behavior and chaos control in fractional-order Lorenz-like systems
    Li Rui-Hong
    Chen Wei-Sheng
    CHINESE PHYSICS B, 2013, 22 (04)
  • [6] Complex dynamical behavior and chaos control in fractional-order Lorenz-like systems
    李瑞红
    陈为胜
    Chinese Physics B, 2013, (04) : 154 - 160
  • [7] On the region of attraction of dynamical systems: Application to Lorenz equations
    Hammami, M. A.
    Rettab, N. H.
    ARCHIVES OF CONTROL SCIENCES, 2020, 30 (03): : 389 - 409
  • [8] Dynamical analysis and boundedness for a generalized chaotic Lorenz model
    Mao, Xinna
    Feng, Hongwei
    Al-Towailb, Maryam A.
    Saberi-Nik, Hassan
    AIMS MATHEMATICS, 2023, 8 (08): : 19719 - 19742
  • [9] COMPARISON OF LORENZ-LIKE LASER BEHAVIOR WITH THE LORENZ MODEL
    HUBNER, U
    KLISCHE, W
    ABRAHAM, NB
    WEISS, CO
    COHERENCE AND QUANTUM OPTICS VI, 1989, : 517 - 520
  • [10] Experimental validation of a dynamical systems model of neural behavior
    Bergethon, PR
    ANNALS OF NEUROLOGY, 2004, 56 : S66 - S66