Dynamical Behavior of a Generalized Lorenz System Model and its Simulation

被引:1
|
作者
Zhang, Fuchen [1 ]
Liao, Xiaofeng [2 ]
Zhang, Guangyun [3 ]
机构
[1] Chongqing Technol & Business Univ, Coll Math & Stat, Chongqing 400067, Peoples R China
[2] Southwest Univ, Coll Elect & Informat Engn, Chongqing 400716, Peoples R China
[3] Chongqing Technol & Business Univ, Int Business Sch, Chongqing 400067, Peoples R China
基金
中国国家自然科学基金;
关键词
chaotic system; domain of attraction; hidden attractors; HOMOCLINIC TRAJECTORIES; HIDDEN ATTRACTOR; SHIMIZU-MORIOKA; CHAOTIC SYSTEM; EXISTENCE; CHEN; LU; DIMENSION; ORBITS; BOUNDS;
D O I
10.1002/cplx.21714
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, the dynamical behavior of a generalized Lorenz system is derived based on stability theory of dynamical systems. The meaningful contribution of this article is that the domain of attraction of the new chaotic system is studied in detailed. Finally, numerical simulations are given to verify the effectiveness and correctness of the obtained results. (C) 2015 Wiley Periodicals, Inc.
引用
收藏
页码:99 / 105
页数:7
相关论文
共 50 条
  • [1] DYNAMICAL BEHAVIOR OF THE GENERALIZED COMPLEX LORENZ CHAOTIC SYSTEM
    Zhang, Fuchen
    Xu, Fei
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2024, 14 (04): : 1915 - 1931
  • [2] Dynamical analysis and boundedness for a generalized chaotic Lorenz model
    Mao, Xinna
    Feng, Hongwei
    Al-Towailb, Maryam A.
    Saberi-Nik, Hassan
    AIMS MATHEMATICS, 2023, 8 (08): : 19719 - 19742
  • [3] BEHAVIOR PATTERNS IN MULTIPARAMETRIC DYNAMICAL SYSTEMS: LORENZ MODEL
    Barrio, Roberto
    Blesa, Fernando
    Serrano, Sergio
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2012, 22 (06):
  • [4] Chaos in fractional-order generalized Lorenz system and its synchronization circuit simulation
    张若洵
    杨世平
    Chinese Physics B, 2009, (08) : 3295 - 3303
  • [5] Dynamical Analysis of the Generalized Lorenz Systems
    Fuchen Zhang
    Xiaofeng Liao
    Guangyun Zhang
    Chunlai Mu
    Journal of Dynamical and Control Systems, 2017, 23 : 349 - 362
  • [6] Dynamical Analysis of the Generalized Lorenz Systems
    Zhang, Fuchen
    Liao, Xiaofeng
    Zhang, Guangyun
    Mu, Chunlai
    JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2017, 23 (02) : 349 - 362
  • [7] Chaos in fractional-order generalized Lorenz system and its synchronization circuit simulation
    Zhang Ruo-Xun
    Yang Shi-Ping
    CHINESE PHYSICS B, 2009, 18 (08) : 3295 - 3303
  • [8] Chaotic behavior of generalized Lorenz maps and its invariant density
    Wang, Fulai
    Da, Qingli
    Dongnan Daxue Xuebao (Ziran Kexue Ban)/Journal of Southeast University (Natural Science Edition), 2007, 37 (04): : 711 - 715
  • [9] Dynamical properties and simulation of a new Lorenz-like chaotic system
    Xianyi Li
    Qianjun Ou
    Nonlinear Dynamics, 2011, 65 : 255 - 270
  • [10] Dynamical Analysis and Simulation of a New Lorenz-Like Chaotic System
    Li, You
    Zhao, Ming
    Geng, Fengjie
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2021, 2021