Dynamical Behavior of a Generalized Lorenz System Model and its Simulation

被引:1
|
作者
Zhang, Fuchen [1 ]
Liao, Xiaofeng [2 ]
Zhang, Guangyun [3 ]
机构
[1] Chongqing Technol & Business Univ, Coll Math & Stat, Chongqing 400067, Peoples R China
[2] Southwest Univ, Coll Elect & Informat Engn, Chongqing 400716, Peoples R China
[3] Chongqing Technol & Business Univ, Int Business Sch, Chongqing 400067, Peoples R China
基金
中国国家自然科学基金;
关键词
chaotic system; domain of attraction; hidden attractors; HOMOCLINIC TRAJECTORIES; HIDDEN ATTRACTOR; SHIMIZU-MORIOKA; CHAOTIC SYSTEM; EXISTENCE; CHEN; LU; DIMENSION; ORBITS; BOUNDS;
D O I
10.1002/cplx.21714
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, the dynamical behavior of a generalized Lorenz system is derived based on stability theory of dynamical systems. The meaningful contribution of this article is that the domain of attraction of the new chaotic system is studied in detailed. Finally, numerical simulations are given to verify the effectiveness and correctness of the obtained results. (C) 2015 Wiley Periodicals, Inc.
引用
收藏
页码:99 / 105
页数:7
相关论文
共 50 条
  • [31] Ši’lnikov Chaos in the Generalized Lorenz Canonical Form of Dynamical Systems
    Tianshou Zhou
    Guanrong Chen
    Sergej ČelikovskÝ
    Nonlinear Dynamics, 2005, 39 : 319 - 334
  • [32] Si'lnikov chaos in the generalized Lorenz canonical form of dynamical systems
    Zhou, TS
    Chen, GR
    Celikovsky, S
    NONLINEAR DYNAMICS, 2005, 39 (04) : 319 - 334
  • [33] Aggregated Negative Feedback in a Generalized Lorenz Model
    Shen, Bo-Wen
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2019, 29 (03):
  • [34] Some New Results for the Generalized Lorenz System
    Fuchen Zhang
    Xiaofeng Liao
    Guangyun Zhang
    Qualitative Theory of Dynamical Systems, 2017, 16 : 749 - 759
  • [35] Invariant algebraic surfaces of the generalized Lorenz system
    Xijun Deng
    Zeitschrift für angewandte Mathematik und Physik, 2013, 64 : 1443 - 1449
  • [36] Chaotic Saddles in a Generalized Lorenz Model of Magnetoconvection
    Franco, Francis F.
    Rempel, Erico L.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2020, 30 (12):
  • [37] Nonlinear dynamics and complexity in the generalized Lorenz system
    Macek, Wieslaw M.
    NONLINEAR DYNAMICS, 2018, 94 (04) : 2957 - 2968
  • [38] Some New Results for the Generalized Lorenz System
    Zhang, Fuchen
    Liao, Xiaofeng
    Zhang, Guangyun
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2017, 16 (03) : 749 - 759
  • [39] Invariant algebraic surfaces of the generalized Lorenz system
    Deng, Xijun
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2013, 64 (05): : 1443 - 1449
  • [40] ON THE ANTI-SYNCHRONIZATION DETECTION FOR THE GENERALIZED LORENZ SYSTEM AND ITS APPLICATIONS TO SECURE ENCRYPTION
    Lynnyk, Volodymyr
    Celikovsky, Sergej
    KYBERNETIKA, 2010, 46 (01) : 1 - 18