BEHAVIOR PATTERNS IN MULTIPARAMETRIC DYNAMICAL SYSTEMS: LORENZ MODEL

被引:11
|
作者
Barrio, Roberto [1 ,2 ]
Blesa, Fernando [3 ]
Serrano, Sergio [1 ,2 ]
机构
[1] Univ Zaragoza, IUMA, E-50009 Zaragoza, Spain
[2] Univ Zaragoza, GME, Dept Matemat Aplicada, E-50009 Zaragoza, Spain
[3] Univ Zaragoza, GME, Dept Fis Aplicada, E-50009 Zaragoza, Spain
来源
关键词
Lorenz equations; chaos; sensitivity analysis; chaos indicators; STRANGE ATTRACTORS; BOUNDS; CHAOS; FLOW;
D O I
10.1142/S0218127412300194
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In experimental and theoretical studies of Dynamical Systems, there are usually several parameters that govern the models. Thus, a detailed study of the global parametric phase space is not easy and normally unachievable. In this paper, we show that a careful selection of one straight line (or other 1D manifold) permits us to obtain a global idea of the evolution of the system in some circumstances. We illustrate this fact with the paradigmatic example of the Lorenz model, based on a global study, changing all three parameters. Besides, searching in other regions, for all the detected behavior patterns in one straight line, we have been able to see that missing topological structures of the chaotic attractors may be found on the chaotic-saddles.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Multiparametric dissipative linear stationary dynamical scattering systems: Discrete case
    Kalyuzhniy, DS
    JOURNAL OF OPERATOR THEORY, 2000, 43 (02) : 427 - 460
  • [22] A PREDICTABILITY STUDY OF LORENZ 28-VARIABLE MODEL AS A DYNAMICAL SYSTEM
    KRISHNAMURTHY, V
    JOURNAL OF THE ATMOSPHERIC SCIENCES, 1993, 50 (14) : 2215 - 2229
  • [23] Dynamical systems and the structure of behavior
    Newtson, D
    APPLICATIONS OF NONLINEAR DYNAMICS TO DEVELOPMENTAL PROCESS MODELING, 1998, : 199 - 220
  • [24] THE DYNAMICAL BEHAVIOR OF CLASSIFIER SYSTEMS
    MILLER, JH
    FORREST, S
    PROCEEDINGS OF THE THIRD INTERNATIONAL CONFERENCE ON GENETIC ALGORITHMS, 1989, : 304 - 310
  • [25] Theoretical Basis and Application of an Analogue-Dynamical Model in the Lorenz System
    任宏利
    丑纪范
    黄建平
    张培群
    AdvancesinAtmosphericSciences, 2009, 26 (01) : 67 - 77
  • [26] Theoretical Basis and Application of an Analogue-Dynamical Model in the Lorenz System
    Ren Hongli
    Chou Jifan
    Huang Jianping
    Zhang Peiqun
    ADVANCES IN ATMOSPHERIC SCIENCES, 2009, 26 (01) : 67 - 77
  • [27] Theoretical basis and application of an analogue-dynamical model in the Lorenz system
    Hongli Ren
    Jifan Chou
    Jianping Huang
    Peiqun Zhang
    Advances in Atmospheric Sciences, 2009, 26 : 67 - 77
  • [28] Patterns of synchrony in lattice dynamical systems
    Antoneli, F
    Dias, APS
    Golubitsky, M
    Wang, YJ
    NONLINEARITY, 2005, 18 (05) : 2193 - 2209
  • [29] Analytical and numerical investigation of two families of Lorenz-like dynamical systems
    Panchev, S.
    Spassova, T.
    Vitanov, N. K.
    CHAOS SOLITONS & FRACTALS, 2007, 33 (05) : 1658 - 1671
  • [30] On the Dynamical Behavior of the ABC Model
    Bertini, Lorenzo
    Cancrini, Nicoletta
    Posta, Gustavo
    JOURNAL OF STATISTICAL PHYSICS, 2011, 144 (06) : 1284 - 1307