BEHAVIOR PATTERNS IN MULTIPARAMETRIC DYNAMICAL SYSTEMS: LORENZ MODEL

被引:11
|
作者
Barrio, Roberto [1 ,2 ]
Blesa, Fernando [3 ]
Serrano, Sergio [1 ,2 ]
机构
[1] Univ Zaragoza, IUMA, E-50009 Zaragoza, Spain
[2] Univ Zaragoza, GME, Dept Matemat Aplicada, E-50009 Zaragoza, Spain
[3] Univ Zaragoza, GME, Dept Fis Aplicada, E-50009 Zaragoza, Spain
来源
关键词
Lorenz equations; chaos; sensitivity analysis; chaos indicators; STRANGE ATTRACTORS; BOUNDS; CHAOS; FLOW;
D O I
10.1142/S0218127412300194
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In experimental and theoretical studies of Dynamical Systems, there are usually several parameters that govern the models. Thus, a detailed study of the global parametric phase space is not easy and normally unachievable. In this paper, we show that a careful selection of one straight line (or other 1D manifold) permits us to obtain a global idea of the evolution of the system in some circumstances. We illustrate this fact with the paradigmatic example of the Lorenz model, based on a global study, changing all three parameters. Besides, searching in other regions, for all the detected behavior patterns in one straight line, we have been able to see that missing topological structures of the chaotic attractors may be found on the chaotic-saddles.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] DYNAMICAL BEHAVIORS OF AGENERALIZED LORENZ FAMILY
    Zhang, Fuchen
    Liao, Xiaofeng
    Zhang, Guangyun
    Mu, Chunlai
    Xiao, Min
    Zhou, Ping
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2017, 22 (10): : 3707 - 3720
  • [42] Dynamical Analysis of a Modified Lorenz System
    Tee, Loong Soon
    Salleh, Zabidin
    JOURNAL OF MATHEMATICS, 2013, 2013
  • [43] Experimental validation of equivalent mechanical model for understanding dynamical behavior of power systems
    Omagari, Yuko
    Funaki, Tsuyoshi
    IEICE NONLINEAR THEORY AND ITS APPLICATIONS, 2011, 2 (03): : 332 - 346
  • [44] SELF-ORGANIZATION AND EMERGENCE OF PATTERNS OF BEHAVIOR IN REASONING AND LEARNING, FROM THE DYNAMICAL SYSTEMS PERSPECTIVE
    Castillo, Ramon D.
    Kloos, Heidi
    LIMITE-REVISTA DE FILOSOFIA Y PSICOLOGIA, 2015, 10 (34): : 23 - 31
  • [45] Multiparametric Concept for the non-drug Modulation of conspicuous Behavior Patterns
    Jacobs, A. H.
    Kowar, M.
    Weitensteiner, K.
    ZEITSCHRIFT FUR GERONTOLOGIE UND GERIATRIE, 2018, 51 : 63 - 63
  • [46] Synchronization of two different chaotic systems: a new system and each of the dynamical systems Lorenz, Chen and Lu
    Chen, HK
    CHAOS SOLITONS & FRACTALS, 2005, 25 (05) : 1049 - 1056
  • [47] Dynamical behavior for stochastic lattice systems
    Lv, Y
    Sun, J
    CHAOS SOLITONS & FRACTALS, 2006, 27 (04) : 1080 - 1090
  • [48] QUALITATIVE BEHAVIOR OF DYNAMICAL-SYSTEMS
    MARTINS, JCC
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE II, 1985, 301 (10): : 653 - 655
  • [49] Stabilization of the chaotic behavior of dynamical systems
    Loskutov, AY
    Dzhanoev, AR
    DOKLADY PHYSICS, 2003, 48 (10) : 580 - 582
  • [50] ON THE FORWARD DYNAMICAL BEHAVIOR OF NONAUTONOMOUS SYSTEMS
    Li, Chunqiu
    Li, Desheng
    Ju, Xuewei
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2020, 25 (01): : 473 - 487