Class-Discriminative Feature Embedding For Meta-Learning based Few-Shot Classification

被引:0
|
作者
Rahimpour, Alireza [1 ,2 ]
Qi, Hairong [1 ]
机构
[1] Univ Tennessee, Dept Elect Engn & Comp Sci, Knoxville, TN 37996 USA
[2] Ford Motor Co, Greenfield Labs, Palo Alto, CA 94304 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Although deep learning-based approaches have been very effective in solving problems with plenty of labeled data, they suffer in tackling problems for which labeled data are scarce. In few-shot classification, the objective is to train a classifier from only a handful of labeled examples in a support set. In this paper, we propose a few-shot learning framework based on structured margin loss which takes into account the global structure of the support set in order to generate a highly discriminative feature space where the features from distinct classes are well separated in clusters. Moreover, in our meta-learning-based framework, we propose a context-aware query embedding encoder for incorporating support set context into query embedding and generating more discriminative and task-dependent query embeddings. The task-dependent features help the meta-learner to learn a distribution over tasks more effectively. Extensive experiments based on few-shot, zero-shot and semi-supervised learning on three benchmarks show the advantages of the proposed model compared to state-of-the-art.
引用
收藏
页码:3168 / 3176
页数:9
相关论文
共 50 条
  • [1] Fair Meta-Learning For Few-Shot Classification
    Zhao, Chen
    Li, Changbin
    Li, Jincheng
    Chen, Feng
    11TH IEEE INTERNATIONAL CONFERENCE ON KNOWLEDGE GRAPH (ICKG 2020), 2020, : 275 - 282
  • [2] Few-Shot One-Class Classification via Meta-Learning
    Frikha, Ahmed
    Krompass, Denis
    Koepken, Hans-Georg
    Tresp, Volker
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 7448 - 7456
  • [3] Few-Shot Classification Based on Sparse Dictionary Meta-Learning
    Jiang, Zuo
    Wang, Yuan
    Tang, Yi
    MATHEMATICS, 2024, 12 (19)
  • [4] Few-Shot Directed Meta-Learning for Image Classification
    Ouyang, Jihong
    Duan, Ganghai
    Liu, Siguang
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2023, 37 (01)
  • [5] Unsupervised Meta-Learning for Few-Shot Image Classification
    Khodadadeh, Siavash
    Boloni, Ladislau
    Shah, Mubarak
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [6] Contrastive Meta-Learning for Few-shot Node Classification
    Wang, Song
    Tan, Zhen
    Liu, Huan
    Li, Jundong
    PROCEEDINGS OF THE 29TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2023, 2023, : 2386 - 2397
  • [7] Few-shot Edge Classification in Graph Meta-learning
    Yang, Xiaoxiao
    Xu, Jungang
    2022 IEEE 9TH INTERNATIONAL CONFERENCE ON DATA SCIENCE AND ADVANCED ANALYTICS (DSAA), 2022, : 166 - 172
  • [8] Meta-Learning for Few-Shot Land Cover Classification
    Russwurm, Marc
    Wang, Sherrie
    Koerner, Marco
    Lobell, David
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW 2020), 2020, : 788 - 796
  • [9] Meta-Learning for Few-Shot Time Series Classification
    Narwariya, Jyoti
    Malhotra, Pankaj
    Vig, Lovekesh
    Shroff, Gautam
    Vishnu, T. V.
    PROCEEDINGS OF THE 7TH ACM IKDD CODS AND 25TH COMAD (CODS-COMAD 2020), 2020, : 28 - 36
  • [10] META-LEARNING FOR FEW-SHOT TIME SERIES CLASSIFICATION
    Wang, Sherrie
    Russwurm, Marc
    Koerner, Marco
    Lobell, David B.
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 7041 - 7044