Iterative image reconstruction for cerebral perfusion CT using a pre-contrast scan induced edge-preserving prior

被引:142
|
作者
Ma, Jianhua [1 ,2 ]
Zhang, Hua [2 ]
Gao, Yang [2 ]
Huang, Jing [2 ]
Liang, Zhengrong [1 ]
Feng, Qianjing [2 ]
Chen, Wufan [2 ]
机构
[1] SUNY Stony Brook, Dept Radiol, Stony Brook, NY 11794 USA
[2] So Med Univ, Dept Biomed Engn, Guangzhou 510515, Guangdong, Peoples R China
来源
PHYSICS IN MEDICINE AND BIOLOGY | 2012年 / 57卷 / 22期
基金
中国国家自然科学基金;
关键词
COMPUTED-TOMOGRAPHY; TEMPORAL RESOLUTION; MICRO-CT; BRAIN; REDUCTION; RESTORATION; PARAMETERS; ALGORITHM; VOLUME;
D O I
10.1088/0031-9155/57/22/7519
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Cerebral perfusion x-ray computed tomography (PCT) imaging, which detects and characterizes the ischemic penumbra, and assesses blood-brain barrier permeability with acute stroke or chronic cerebrovascular diseases, has been developed extensively over the past decades. However, due to its sequential scan protocol, the associated radiation dose has raised significant concerns to patients. Therefore, in this study we developed an iterative image reconstruction algorithm based on the maximum a posterior (MAP) principle to yield a clinically acceptable cerebral PCT image with lower milliampere-seconds (mA s). To preserve the edges of the reconstructed image, an edge-preserving prior was designed using a normal-dose pre-contrast unenhanced scan. For simplicity, the present algorithm was termed as 'MAP-ndiNLM'. Evaluations with the digital phantom and the simulated low-dose clinical brain PCT datasets clearly demonstrate that the MAP-ndiNLM method can achieve more significant gains than the existing FBP and MAP-Huber algorithms with better image noise reduction, low-contrast object detection and resolution preservation. More importantly, the MAP-ndiNLM method can yield more accurate kinetic enhanced details and diagnostic hemodynamic parameter maps than the MAP-Huber method.
引用
收藏
页码:7519 / 7542
页数:24
相关论文
共 50 条
  • [21] Radiation dose reduction in cerebral CT perfusion imaging using iterative reconstruction
    Niesten, Joris M.
    van der Schaaf, Irene C.
    Riordan, Alan J.
    de Jong, Hugo W. A. M.
    Horsch, Alexander D.
    Eijspaart, Daniel
    Smit, Ewoud J.
    Mali, Willem P. T. M.
    Velthuis, Birgitta K.
    EUROPEAN RADIOLOGY, 2014, 24 (02) : 484 - 493
  • [22] Radiation dose reduction in cerebral CT perfusion imaging using iterative reconstruction
    Joris M. Niesten
    Irene C. van der Schaaf
    Alan J. Riordan
    Hugo W. A. M. de Jong
    Alexander D. Horsch
    Daniel Eijspaart
    Ewoud J. Smit
    Willem P. T. M. Mali
    Birgitta K. Velthuis
    European Radiology, 2014, 24 : 484 - 493
  • [23] Effect of Edge-Preserving Adaptive Image Filter on Low-Contrast Detectability in CT Systems: Application of ROC Analysis
    Okumura, Miwa
    Ota, Takamasa
    Kainuma, Kazuhisa
    Sayre, James W.
    McNitt-Gray, Michael
    Katada, Kazuhiro
    INTERNATIONAL JOURNAL OF BIOMEDICAL IMAGING, 2008, 2008
  • [24] A MIXED-ANNEALING ALGORITHM FOR EDGE-PRESERVING IMAGE-RECONSTRUCTION USING A LIMITED NUMBER OF PROJECTIONS
    BEDINI, L
    BENVENUTI, L
    SALERNO, E
    TONAZZINI, A
    SIGNAL PROCESSING, 1993, 32 (03) : 397 - 408
  • [25] Sparse Angular X-ray Cone Beam CT Image Iterative Reconstruction Using Normal-dose Scan Induced Nonlocal Prior
    Zhang, Hua
    Bian, Zhaoying
    Ma, Jianhua
    Huang, Jing
    Gao, Yang
    Liang, Zhengrong
    Chen, Wufan
    2012 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE RECORD (NSS/MIC), 2012, : 3671 - 3674
  • [26] Iterative Image Reconstruction for Sparse-View CT Using Normal-Dose Image Induced Total Variation Prior
    Huang, Jing
    Zhang, Yunwan
    Ma, Jianhua
    Zeng, Dong
    Bian, Zhaoying
    Niu, Shanzhou
    Feng, Qianjin
    Liang, Zhengrong
    Chen, Wufan
    PLOS ONE, 2013, 8 (11):
  • [27] Iterative image reconstruction for sparse-view CT using normal-dose image induced total variation prior
    Zhang, Yunwan
    Ma, Jianhua
    Huang, Jing
    Zhang, Hua
    Bian, Zhaoying
    Zeng, Dong
    Feng, Qianjin
    Liang, Zhengrong
    Chen, Wufan
    MEDICAL IMAGING 2013: PHYSICS OF MEDICAL IMAGING, 2013, 8668
  • [28] EDGE-PRESERVING TOMOGRAPHIC RECONSTRUCTION FROM GAUSSIAN DATA USING A GIBBS PRIOR AND A GENERALIZED EXPECTATION-MAXIMIZATION ALGORITHM
    BEDINI, L
    SALERNO, E
    TONAZZINI, A
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 1994, 5 (03) : 231 - 238
  • [29] Using Edge-Preserving Algorithm for Significantly Improved Image-Domain Material Decomposition in Dual Energy CT
    Zhao, W.
    Niu, T.
    Xing, L.
    Xiong, G.
    Elmore, K.
    Zhu, J.
    Wang, L.
    Min, J.
    MEDICAL PHYSICS, 2015, 42 (06) : 3569 - 3569
  • [30] Parameter selection in limited data cone-beam CT reconstruction using edge-preserving total variation algorithms
    Lohvithee, Manasavee
    Biguri, Ander
    Soleimani, Manuchehr
    PHYSICS IN MEDICINE AND BIOLOGY, 2017, 62 (24): : 9295 - 9321