Bayesian Probabilistic Numerical Methods in Time-Dependent State Estimation for Industrial Hydrocyclone Equipment

被引:11
|
作者
Oates, Chris J. [1 ,2 ]
Cockayne, Jon [3 ]
Aykroyd, Robert G. [4 ]
Girolami, Mark [2 ,5 ]
机构
[1] Newcastle Univ, Sch Math Stat & Phys, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England
[2] Alan Turing Inst, London, England
[3] Univ Warwick, Dept Stat, Coventry, W Midlands, England
[4] Univ Leeds, Sch Math, Leeds, W Yorkshire, England
[5] Imperial Coll London, Dept Math, London, England
基金
英国工程与自然科学研究理事会; 澳大利亚研究理事会; 美国国家科学基金会;
关键词
Electrical tomography; Inverse problems; Partial differential equations; Probabilistic meshless methods; Sequential Monte Carlo; ELECTRICAL-IMPEDANCE TOMOGRAPHY; MONTE-CARLO METHODS; INVERSE PROBLEMS; DIFFERENTIAL-EQUATIONS; ELECTRODE MODELS; APPROXIMATION; ALGORITHMS; COMPLEXITY; INFERENCE;
D O I
10.1080/01621459.2019.1574583
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The use of high-power industrial equipment, such as large-scale mixing equipment or a hydrocyclone for separation of particles in liquid suspension, demands careful monitoring to ensure correct operation. The fundamental task of state-estimation for the liquid suspension can be posed as a time-evolving inverse problem and solved with Bayesian statistical methods. In this article, we extend Bayesian methods to incorporate statistical models for the error that is incurred in the numerical solution of the physical governing equations. This enables full uncertainty quantification within a principled computation-precision trade-off, in contrast to the over-confident inferences that are obtained when all sources of numerical error are ignored. The method is cast within a sequential Monte Carlo framework and an optimized implementation is provided in Python.
引用
收藏
页码:1518 / 1531
页数:14
相关论文
共 50 条
  • [41] Parameter and state estimation with a time-dependent adjoint marine ice sheet model
    Goldberg, D. N.
    Heimbach, P.
    CRYOSPHERE, 2013, 7 (06): : 1659 - 1678
  • [42] Time-dependent probabilistic synthesis for function generator mechanisms
    Zhang, Junfu
    Wang, Jinge
    Du, Xiaoping
    MECHANISM AND MACHINE THEORY, 2011, 46 (09) : 1236 - 1250
  • [43] A time-dependent probabilistic model for fire accident analysis
    Yang, Ruochen
    Khan, Faisal
    Taleb-Berrouane, Mohammed
    Kong, Depeng
    FIRE SAFETY JOURNAL, 2020, 111
  • [44] TIME-DEPENDENT RESISTANCE DETERIORATION IN PROBABILISTIC STRUCTURAL SYSTEMS
    CHAN, HY
    MELCHERS, RE
    CIVIL ENGINEERING SYSTEMS, 1995, 12 (02): : 115 - 132
  • [45] On a probabilistic approach to the Schrodinger equation with a time-dependent potential
    Doss, Halim
    JOURNAL OF FUNCTIONAL ANALYSIS, 2011, 260 (06) : 1824 - 1835
  • [46] Probabilistic maximization of time-dependent capacities in a gas network
    Heitsch, Holger
    Henrion, Rene
    Tischendorf, Caren
    OPTIMIZATION AND ENGINEERING, 2025, 26 (01) : 365 - 400
  • [47] Renewable Energy Integration: Bayesian Networks for Probabilistic State Estimation
    Mengshoel, Ole J.
    Sundararajan, Priya K.
    Reed, Erik
    Piao, Dongzhen
    Johnson, Briana
    DATA ANALYTICS FOR RENEWABLE ENERGY INTEGRATION: TECHNOLOGIES, SYSTEMS AND SOCIETY (DARE 2018), 2018, 11325 : 63 - 82
  • [48] TIME-DEPENDENT TRANSITION STATE THEORY
    Bartsch, Thomas
    Moix, Jeremy M.
    Hernandez, Rigoberto
    Kawai, Shinnosuke
    Uzer, T.
    ADVANCES IN CHEMICAL PHYSICS, VOL 140, 2008, 140 : 189 - 238
  • [49] TIME-DEPENDENT DYNAMICS OF A DETERMINANTAL STATE
    DEUMENS, E
    OHRN, Y
    JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM, 1989, 58 : 23 - 32
  • [50] Time-Dependent Reliability Model of Deteriorating Structures Based on Stochastic Processes and Bayesian Inference Methods
    Huang, Xiaoxu
    Chen, Jianqiao
    JOURNAL OF ENGINEERING MECHANICS, 2015, 141 (03)