Bayesian Probabilistic Numerical Methods in Time-Dependent State Estimation for Industrial Hydrocyclone Equipment

被引:11
|
作者
Oates, Chris J. [1 ,2 ]
Cockayne, Jon [3 ]
Aykroyd, Robert G. [4 ]
Girolami, Mark [2 ,5 ]
机构
[1] Newcastle Univ, Sch Math Stat & Phys, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England
[2] Alan Turing Inst, London, England
[3] Univ Warwick, Dept Stat, Coventry, W Midlands, England
[4] Univ Leeds, Sch Math, Leeds, W Yorkshire, England
[5] Imperial Coll London, Dept Math, London, England
基金
英国工程与自然科学研究理事会; 澳大利亚研究理事会; 美国国家科学基金会;
关键词
Electrical tomography; Inverse problems; Partial differential equations; Probabilistic meshless methods; Sequential Monte Carlo; ELECTRICAL-IMPEDANCE TOMOGRAPHY; MONTE-CARLO METHODS; INVERSE PROBLEMS; DIFFERENTIAL-EQUATIONS; ELECTRODE MODELS; APPROXIMATION; ALGORITHMS; COMPLEXITY; INFERENCE;
D O I
10.1080/01621459.2019.1574583
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The use of high-power industrial equipment, such as large-scale mixing equipment or a hydrocyclone for separation of particles in liquid suspension, demands careful monitoring to ensure correct operation. The fundamental task of state-estimation for the liquid suspension can be posed as a time-evolving inverse problem and solved with Bayesian statistical methods. In this article, we extend Bayesian methods to incorporate statistical models for the error that is incurred in the numerical solution of the physical governing equations. This enables full uncertainty quantification within a principled computation-precision trade-off, in contrast to the over-confident inferences that are obtained when all sources of numerical error are ignored. The method is cast within a sequential Monte Carlo framework and an optimized implementation is provided in Python.
引用
收藏
页码:1518 / 1531
页数:14
相关论文
共 50 条
  • [31] NUMERICAL INSTABILITY OF TIME-DEPENDENT FLOWS
    KEILLER, RA
    JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 1992, 43 (2-3) : 229 - 246
  • [32] Performance Evaluation of Probabilistic Time-Dependent Travel Time Computation
    Golasowski, Martin
    Tomis, Radek
    Martinovic, Jan
    Slaninova, Katerina
    Rapant, Lukas
    COMPUTER INFORMATION SYSTEMS AND INDUSTRIAL MANAGEMENT, CISIM 2016, 2016, 9842 : 377 - 388
  • [33] SOME RECENT METHODS FOR NUMERICAL SOLUTION OF TIME-DEPENDENT PARTIAL DIFFERENTIAL EQUATIONS
    GOURLAY, AR
    PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1971, 323 (1553): : 219 - &
  • [34] Adaptive numerical methods for time-dependent Schrodinger equation in atomic and laser physics
    Derbov, VL
    Kaschiev, MS
    Serov, VV
    Gusev, AA
    Vinitsky, SI
    SARATOV FALL MEETING 2002: LASER PHYSICS AND PHOTONICS, SPECTROSCOPY, AND MOLECULAR MODELING III; COHERENT OPTICS OF ORDERED AND RANDOM MEDIA III, 2003, 5067 : 218 - 226
  • [35] Quantum estimation of a time-dependent perturbation
    Madsen, Claus Normann
    Valdetaro, Lia
    Molmer, Klaus
    PHYSICAL REVIEW A, 2021, 104 (05)
  • [36] Recursive estimation of time-dependent reliability
    Singh, N.
    Microelectronics Reliability, 1994, 34 (08) : 1355 - 1359
  • [37] RECURSIVE ESTIMATION OF TIME-DEPENDENT RELIABILITY
    SINGH, N
    MICROELECTRONICS AND RELIABILITY, 1994, 34 (08): : 1355 - 1359
  • [38] NUMERICAL APPROXIMATIONS FOR A CLASS OF DIFFERENTIAL-EQUATIONS WITH TIME-DEPENDENT AND STATE-DEPENDENT DELAYS
    GYORI, I
    HARTUNG, F
    TURI, J
    APPLIED MATHEMATICS LETTERS, 1995, 8 (06) : 19 - 24
  • [39] Bayesian methods for time-varying state and parameter estimation in induction machines
    Mansouri, Majdi M.
    Mohamed-Seghir, Moustafa M.
    Nounou, Hazem N.
    Nounou, Mohamed N.
    Abu-Rub, Haitham A.
    INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2015, 29 (07) : 905 - 924
  • [40] Methods for dealing with time-dependent confounding
    Daniel, R. M.
    Cousens, S. N.
    De Stavola, B. L.
    Kenward, M. G.
    Sterne, J. A. C.
    STATISTICS IN MEDICINE, 2013, 32 (09) : 1584 - 1618