Existence and nonexistence of solutions for a class of Kirchhoff type equation involving fractional p-Laplacian

被引:4
|
作者
Liu, Senli [1 ]
Chen, Haibo [1 ]
Yang, Jie [1 ]
Su, Yu [2 ]
机构
[1] Cent South Univ, Sch Math & Stat, Changsha 410083, Hunan, Peoples R China
[2] Anhui Univ Sci & Technol, Sch Math & Big Data, Huainan 232001, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
Kirchhoff type equation; Fractional p-Laplacian; Kirchhoff function; Asymptotically linear; GROUND-STATE SOLUTIONS; MULTIPLE POSITIVE SOLUTIONS; BEHAVIOR;
D O I
10.1007/s13398-020-00893-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider the following Kirchhoff type equation involving the fractional p-Laplacian: M (integral integral(R2N) vertical bar u(x) - u(y)vertical bar(p)/vertical bar x - y vertical bar(N+sp) dxdy) (-Delta)(p)(s)u + lambda V (x) vertical bar u vertical bar(p-2) u = K (x) f (u), x is an element of R-N, where lambda is a real parameter, (-Delta)(s)(p) is the fractional p-Laplacian operator, with 0 < s < 1 < p < infinity and sp < N. Functions M, V and K satisfy some suitable conditions. For f is superlinear at infinity, we establish the existence of multiple solutions and infinitely many solutions to above equation, which extend the main result in Pucci et al. (Calc Var Partial Differ Equations 54:2785-2806, 2015). For f is asymptotically linear at infinity, we first study the influence of function K on the existence and nonexistence of solutions for the above equation, which complement the main result in Jia and Luo (J Math Anal Appl 467:893-915, 2018).
引用
收藏
页数:28
相关论文
共 50 条
  • [41] Existence of sign-changing solutions for a class of p-Laplacian Kirchhoff-type equations
    Han, Xiaotian
    Ma, Xiaoyan
    He, Xiaoming
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2019, 64 (02) : 181 - 203
  • [42] Existence theorems for entire solutions of stationary Kirchhoff fractional p-Laplacian equations
    Caponi, Maicol
    Pucci, Patrizia
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2016, 195 (06) : 2099 - 2129
  • [43] Infinitely many solutions for the stationary Kirchhoff problems involving the fractional p-Laplacian
    Xiang Mingqi
    Bisci, Giovanni Molica
    Tian, Guohua
    Zhang, Binlin
    NONLINEARITY, 2016, 29 (02) : 357 - 374
  • [44] Existence results for Schrodinger-Choquard-Kirchhoff equations involving the fractional p-Laplacian
    Pucci, Patrizia
    Xiang, Mingqi
    Zhang, Binlin
    ADVANCES IN CALCULUS OF VARIATIONS, 2019, 12 (03) : 253 - 275
  • [45] EXISTENCE AND MULTIPLICITY OF SOLUTIONS FOR CRITICAL KIRCHHOFF-CHOQUARD EQUATIONS INVOLVING THE FRACTIONAL p-LAPLACIAN ON THE HEISENBERG GROUP
    Bai, Shujie
    Song, Yueqiang
    Repovs, Dusan D.
    JOURNAL OF NONLINEAR AND VARIATIONAL ANALYSIS, 2024, 8 (01): : 143 - 166
  • [46] A Kirchhoff Type Equation in RN Involving the fractional (p, q)-Laplacian
    Ambrosio, Vincenzo
    JOURNAL OF GEOMETRIC ANALYSIS, 2022, 32 (04)
  • [47] Kirchhoff-type problems involving the fractional p-Laplacian on the Heisenberg group
    Jieyu Zhou
    Lifeng Guo
    Binlin Zhang
    Rendiconti del Circolo Matematico di Palermo Series 2, 2022, 71 : 1133 - 1157
  • [48] Degenerate Kirchhoff-type diffusion problems involving the fractional p-Laplacian
    Pan, Ning
    Zhang, Binlin
    Cao, Jun
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2017, 37 : 56 - 70
  • [49] Kirchhoff-type problems involving the fractional p-Laplacian on the Heisenberg group
    Zhou, Jieyu
    Guo, Lifeng
    Zhang, Binlin
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2022, 71 (03) : 1133 - 1157
  • [50] Multiple solutions for nonhomogeneous Schrodinger-Kirchhoff type equations involving the fractional p-Laplacian in RN
    Pucci, Patrizia
    Xiang, Mingqi
    Zhang, Binlin
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2015, 54 (03) : 2785 - 2806