Existence of sign-changing solutions for a class of p-Laplacian Kirchhoff-type equations

被引:10
|
作者
Han, Xiaotian [1 ]
Ma, Xiaoyan [1 ]
He, Xiaoming [1 ]
机构
[1] Minzu Univ China, Coll Sci, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
p-Kirchhoff type equation; sign-changing solution; vanishing potential; Nehari manifold; NONLINEAR SCHRODINGER-EQUATIONS; POSITIVE SOLUTIONS; NONTRIVIAL SOLUTIONS; MULTIPLE SOLUTIONS; NODAL SOLUTIONS; GROUND-STATES;
D O I
10.1080/17476933.2018.1427078
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we investigate the existence of least energy sign-changing solutions for the following p-Laplacian Kirchhoff type equation {-(a+b integral(N)(R)vertical bar del u vertical bar(p)dx) Delta(p)u+V(x)vertical bar u vertical bar p(-2)u = K(x)f(u) in R-N, u is an element of D-1,D-p (R-N), where a,b > 0 are constants, Delta(p)u = div (vertical bar del u vertical bar(p-2) del u), 1 < p < N, V(x), K(x) are positive continuous functions which vanish at infinity, the nonlinearity f is a function with a subcritical growth. Using a minimization argument and the Nehari manifold method, we prove the existence of a least energy sign-changing solution to this problem.
引用
收藏
页码:181 / 203
页数:23
相关论文
共 50 条