CATEGORIFIED TRACE FOR MODULE TENSOR CATEGORIES OVER BRAIDED TENSOR CATEGORIES

被引:0
|
作者
Henriques, Andre [1 ]
Penneys, David [2 ]
Tener, James [3 ]
机构
[1] Univ Oxford, Math Inst, Radcliffe Observ Quarter, Andrew Wiles Bldg,Woodstock Rd, Oxford OX2 6GG, England
[2] Ohio State Univ, Dept Math, 231 W 18th Ave, Columbus, OH 43210 USA
[3] Univ Calif Santa Barbara, Dept Math, Santa Barbara, CA 93106 USA
来源
DOCUMENTA MATHEMATICA | 2016年 / 21卷
基金
美国国家科学基金会;
关键词
MONOIDAL CATEGORIES; FROBENIUS ALGEBRAS; SUBFACTORS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a braided pivotal category C and a pivotal module tensor category M, we define a functor Tr-C : M -> C, called the associated categorified trace. By a result of Bezrukavnikov, Finkelberg and Ostrik, the functor Tr-C comes equipped with natural isomorphisms tau(x,y) : Tr-C (x circle times y) -> Tr-C (y circle times x), which we call the traciators. This situation lends itself to a diagramatic calculus of 'strings on cylinders', where the traciator corresponds to wrapping a string around the back of a cylinder. We show that Tr-C in fact has a much richer graphical calculus in which the tubes are allowed to branch and braid. Given algebra objects A and B, we prove that Tr-C(A) and Tr-C(A circle times B) are again algebra objects. Moreover, provided certain mild assumptions are satisfied, Tr-C (A) and Tr-C (A circle times B) are semisimple whenever A and B are semisimple.
引用
下载
收藏
页码:1089 / 1150
页数:62
相关论文
共 50 条
  • [1] MODULE CATEGORIES OVER EQUIVARIANTIZED TENSOR CATEGORIES
    Mombelli, Martin
    Natale, Sonia
    MOSCOW MATHEMATICAL JOURNAL, 2017, 17 (01) : 97 - 128
  • [2] BRAIDED TENSOR CATEGORIES
    JOYAL, A
    STREET, R
    ADVANCES IN MATHEMATICS, 1993, 102 (01) : 20 - 78
  • [3] Module categories over finite pointed tensor categories
    Galindo, Cesar
    Mombelli, Martin
    SELECTA MATHEMATICA-NEW SERIES, 2012, 18 (02): : 357 - 389
  • [4] Module categories over finite pointed tensor categories
    César Galindo
    Martín Mombelli
    Selecta Mathematica, 2012, 18 : 357 - 389
  • [5] Trivializing group actions on braided crossed tensor categories and graded braided tensor categories
    Galindo, Cesar
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2022, 74 (03) : 735 - 752
  • [6] Centers of braided tensor categories
    Liu, Zhimin
    Zhu, Shenglin
    JOURNAL OF ALGEBRA, 2023, 614 : 115 - 153
  • [7] Integrability and Braided Tensor Categories
    Paul Fendley
    Journal of Statistical Physics, 2021, 182
  • [8] Invertible braided tensor categories
    Brochier, Adrien
    Jordan, David
    Safronov, Pavel
    Snyder, Noah
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2021, 21 (04): : 2107 - 2140
  • [9] On dualizability of braided tensor categories
    Brochier, Adrien
    Jordan, David
    Snyder, Noah
    COMPOSITIO MATHEMATICA, 2021, 157 (03) : 435 - 483
  • [10] Pointed braided tensor categories
    Bontea, Costel-Gabriel
    Nikshych, Dmitri
    TENSOR CATEGORIES AND HOPF ALGEBRAS, 2019, 728 : 67 - 94