Centers of braided tensor categories

被引:1
|
作者
Liu, Zhimin [1 ]
Zhu, Shenglin [1 ]
机构
[1] Fudan Univ, Shanghai 200433, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Drinfeld center; Braided tensor category; Automorphism braided group; End and coend; Module category over monoidal; category; YETTER-DRINFELD MODULES; WEAK HOPF-ALGEBRAS; QUANTUM; RECONSTRUCTION; THEOREM;
D O I
10.1016/j.jalgebra.2022.09.012
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let C be a finite braided multitensor category. Then the end B = fX is an element of C X circle times X* is natural a Hopf algebra in C. We show that the Drinfeld center of C is isomorphic to the category of left B- comodules in C, and the decomposition of B into a direct sum of indecomposable C-subcoalgebras leads to a decomposition of B-Comod C into a direct sum of indecomposable C-module subcategories.As an application, we present an explicit characterization of the structure of irreducible Yetter-Drinfeld modules over semisimple and cosemisimple quasi-triangular weak Hopf algebras. Our results generalize those results on finite groups and on quasi-triangular Hopf algebras.(c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页码:115 / 153
页数:39
相关论文
共 50 条
  • [1] Relative centers and tensor products of tensor and braided fusion categories
    Greenough, Justin
    [J]. JOURNAL OF ALGEBRA, 2013, 388 : 374 - 396
  • [2] BRAIDED TENSOR CATEGORIES
    JOYAL, A
    STREET, R
    [J]. ADVANCES IN MATHEMATICS, 1993, 102 (01) : 20 - 78
  • [3] Trivializing group actions on braided crossed tensor categories and graded braided tensor categories
    Galindo, Cesar
    [J]. JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2022, 74 (03) : 735 - 752
  • [4] Integrability and Braided Tensor Categories
    Paul Fendley
    [J]. Journal of Statistical Physics, 2021, 182
  • [5] On dualizability of braided tensor categories
    Brochier, Adrien
    Jordan, David
    Snyder, Noah
    [J]. COMPOSITIO MATHEMATICA, 2021, 157 (03) : 435 - 483
  • [6] Integrability and Braided Tensor Categories
    Fendley, Paul
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2021, 182 (02)
  • [7] Pointed braided tensor categories
    Bontea, Costel-Gabriel
    Nikshych, Dmitri
    [J]. TENSOR CATEGORIES AND HOPF ALGEBRAS, 2019, 728 : 67 - 94
  • [8] Invertible braided tensor categories
    Brochier, Adrien
    Jordan, David
    Safronov, Pavel
    Snyder, Noah
    [J]. ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2021, 21 (04): : 2107 - 2140
  • [9] CATEGORIFIED TRACE FOR MODULE TENSOR CATEGORIES OVER BRAIDED TENSOR CATEGORIES
    Henriques, Andre
    Penneys, David
    Tener, James
    [J]. DOCUMENTA MATHEMATICA, 2016, 21 : 1089 - 1150
  • [10] Galois extensions of braided tensor categories and braided crossed G-categories
    Müger, M
    [J]. JOURNAL OF ALGEBRA, 2004, 277 (01) : 256 - 281